A. Stephen K. Hashmi et al.
COMMUNICATIONS
(10.0 mL) was added in order to precipitate the product.
The product was filtered off and dried under reduced pres-
sure to afford a pink solid; yield: 83.9 mg (121 mmol, 67%);
1H NMR (500 MHz, CD2Cl2): d=0.88 (d, J=6.7 Hz, 3H,
CH3), 0.91 (d, J=6.7 Hz, 3H, CH3), 0.97 (d, J=6.7 Hz, 3H,
CH3), 1.13 (d, J=6.8 Hz, 6H, CH3), 1.15 (d, J=6.8 Hz, 6H,
CH3), 1.29 (d, J=6.5 Hz, 3H, CH3), 1.43–1.75 (m, 6H, CH2),
1.91 (m, 3H, CH2), 2.51 (m, 1H, CH), 2.98 (m, J=6.7 Hz,
1H, CH), 3.09 (m, J=6.8 Hz, 2H, CH), 4.27 (d, J=21.0 Hz,
1H, CH2), 4.34 (d, J=21.0 Hz, 1H, CH2), 5.05 (m, 1H, CH),
7.16 (m, 3H, ArH), 7.36 (m, 2H, ArH), 7.48 (t, J=7.8 Hz,
1H, ArH); 13C NMR (75 MHz, CD2Cl2): d=22.28, 23.06
(2C), 23.39 (2C), 23.72, 25.28, 25.30, 25.57, 25.75, 25.80,
29.63, 30.16 (2C), 30.25, 31.31, 32.25, 50.02, 64.13, 124.31,
124.43 (2C), 125.89 (2C), 129.22, 131.63, 131.75, 145.92,
146.52 (2C), 149.04, 171.25, 198.35 (isonitrile carbon atom
1970, 92, 2555–2557; b) A. L. Balch, J. E. Parks, J. Am.
Chem. Soc. 1974, 96, 4114–4121; a recent report on the
intramolecular cyclisation of isocyanoacetate does need
a separate second alkylation step with another reagent
to form a carbene ligand and also did not aim at cataly-
sis either: c) S. Schrçlkamp, A. Vçlkl, T. Lꢀgger, F. E.
Hahn, W. Beck, W. P. Fehlhammer, Z. Anorg. Allg.
Chem. 2008, 634, 2940–2947; as the preceeding refer-
ence, other examples of known template synthesis at
the metal centre using isonitriles are based on entirely
different disconnections of the NHC framework and in
addition do not lead to the NHCs with oxo groups in
the backbone: d) F. E. Hahn, V. Langenhahn, N. Meier,
T. Lꢀgger, W. P. Fehlhammer, Chem. Eur. J. 2003, 9,
704–712; e) F. E. Hahn, C. G. Plumed, M. Mꢀnder, T.
Lꢀgger, Chem. Eur. J. 2004, 10, 6285–6293; f) for a
review also covering such syntheses, see: F. E. Hahn,
M. C. Jahnke, Angew. Chem. 2008, 120, 3166–3216;
Angew. Chem. Int. Ed. 2008, 47, 3122–3172.
˜
was not observed); IR (KBr): n=2965, 2933, 2866, 2186,
1756, 1635, 1590, 1533, 1465, 1386, 1363, 1349, 1296, 1271,
1212, 1182, 1007, 800, 750 cmÀ1; HR-MS (FAB+): m/z=
654.2444, calcd. for C34H47ON3ClPd [MÀClÀ]+: 654.2442.
[5] Selective conversions are also possible at 808C, but we
preferred the mild conditions at room temperature.
The addition of molecular sieves to sequester the meth-
anol formed during the reaction does not show any
beneficial effect, which is understandable for two rea-
sons: (i) kinetics: the rate-limiting step is the addition
of the amine to the coordinated isonitrile, and metha-
nol is not involved in this first step of the reaction but
in the second, subsequent step; (ii) thermodynamics:
the amide formation from an ester is strongly exother-
mic, and since the amide formation is intramolecular,
the entropy is also clearly in favour for this process
even in the absence of molecular sieves.
[6] While (Me2S)AuCl is commercially available, (tht)AuCl
is easy to prepare and sets free the less smelly thioeth-
er. We tested two representative reactions also with
(Me2S)AuCl and as expected obtained the same results.
[7] CCDC 818376 (1), CCDC 818377 (11b) and CCDC
818378 (11c) contain the supplementary crystallograph-
ic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data
Acknowledgements
C. Lothschꢀtz is thankful for financial support by the Stud-
ienstiftung des deutschen Volkes e.V.
References
[1] a) K. ꢅfele, J. Organomet. Chem. 1968, 12, 42–43;
b) H.-W. Wanzlick, H. J. Schçnherr, Angew. Chem.
1968, 80, 154–154; Angew. Chem. Int. Ed. Engl. 1968,
7, 141–142.
[2] a) S. P. Nolan, (Ed.), N-Heterocyclic Carbenes in Syn-
thesis, Wiley-VCH, Weinheim, 2006; b) T. Drçge, F.
Glorius, Angew. Chem. 2010, 122, 7094–7107; Angew.
Chem. Int. Ed. 2010, 49, 6940–6952.
[3] a) E. L. Rosen, C. D. Varnado Jr, A. G. Tennyson,
D. M. Khramov, J. W. Kamplain, D. H. Sung, P. T.
Cresswell, V. M. Lynch, C. W. Bielawski, Organometal-
lics 2009, 28, 6695–6706; b) D. M. Khramov, E. L.
Rosen, V. M. Lynch, C. W. Bielawski, Angew. Chem.
2008, 120, 2299–2302; Angew. Chem. Int. Ed. 2008, 47,
2267–2270; c) U. Siemeling, C. Fꢁrber, C. Bruhn,
Chem. Commun. 2009, 98–100; d) U. Siemeling, C.
Fꢁber, M. Leibold, C. Bruhn, P. Mꢀcke, R. F. Winter,
B. Sarkar, M. von Hopffgarten, G. Frenking, Eur. J.
Inorg. Chem. 2009, 4607–4612; e) L. Benhamou, V.
Cꢂsar, H. Gornitzka, N. Lugan, G. Lavigne, Chem.
Commun. 2009, 4720–4722; f) L. Benhamou, N. Vuj-
kovic, V. Cꢂsar, H. Gornitzka, N. Lugan, G. Lavigne,
Organometallics 2010, 29, 2616–2630; g) V. Cꢂsar, N.
Lugan, G. Lavigne, Chem. Eur. J. 2010, 16, 11432–
11442.
[8] L.-P. Liu, B. Xu, M. S. Mashuta, G. B. Hammond, J.
Am. Chem. Soc. 2008, 130, 17642–17643.
[9] a) A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am.
Chem. Soc. 2000, 122, 11553–11554; b) A. S. K.
Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W.
Bats, W. Frey, Chem. Eur. J. 2008, 14, 3703–3708.
[10] A. S. K. Hashmi, J. P. Weyrauch, M. Rudolph, E. Kur-
pejovic, Angew. Chem. 2004, 116, 6707–6709; Angew.
Chem. Int. Ed. 2004, 43, 6545–6547.
[11] a) A. S. K. Hashmi, A. Schuster, F. Rominger, Angew.
Chem. 2009, 121, 8396–8398; Angew. Chem. Int. Ed.
2009, 48, 8247–8249; b) for a review on intermediates
in gold catalysis, see: A. S. K. Hashmi, Angew. Chem.
2010, 122, 5360–5369; Angew. Chem. Int. Ed. 2010, 49,
5232–5241.
[12] S.-T. Liu, C.-I Lee, C.-F. Fu, C.-H. Chen, Y.-H. Liu,
C. J. Elsevier, S.-M. Peng, J.-T. Chen, Organometallics
2009, 28, 6957–6962.
[4] Early reports on the addition of amines to coordinated
isonitriles did not address catalyst formation: a) A.
Burke, A. L. Balch, J. H. Enemark, J. Am. Chem. Soc.
1412
ꢃ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 1407 – 1412