J. M. Khurana, K. Vij / Tetrahedron Letters 52 (2011) 3666–3669
3669
12. Hoefnagel, A. J.; Gennewagh, E. A.; Downing, R. S.; Bekkum, H. V. J. Chem. Soc.,
Chem. Commun. 1995, 225.
nickel nanoparticles in ethylene glycol [2 mL of dispersion (0.0235 wt % of Ni)/
0.1 g of 1] in a 25 mL R.B. flask. Dimedone (4a, 2 mmol) was added and the
stirring was continued. The progress of the reaction was monitored by TLC
using petroleum ether/ethyl acetate (60:40, v/v) as eluent. Upon complete
formation of 5, the solid product was filtered at pump, washed with water,
dried and recrystallised from hot ethanol. 7,7-Dimethyl-4-aryl-4,6,7,8-
tetrahydro-3H-chromene-2,5-dione was obtained as identified by its mp and
spectral data.
13. Itoh, K.; Kanemasa, S. Tetrahedron Lett. 2003, 44, 1799.
14. Itoh, K.; Hasegawa, M.; Tanaka, J.; Kanemasa, S. Org. Lett. 2005, 7, 979.
15. (a) Rong, L.; Li, X.; Wang, H.; Shi, D.; Tu, S.; Zhuang, Q. Synth. Commun. 2007, 37,
183; (b) Tu, S.; Zhou, J. F.; Cai, P.; Wang, H.; Feng, J. Synth. Commun. 2001, 31,
3729.
16. Wei, P.; Zhang, X.; Tu, S.; Yan, S.; Ying, H.; Ouyang, P. Bioorg. Med. Chem. Lett.
2009, 19, 828.
17. Alivisatos, A. P. Science 1996, 271, 933.
Selected spectral data: 5-(4-Bromobenzo[1,3]dioxol-5-ylmethylene)-2,2-
dimethyl[1,3]dioxane-4,6-dione (3o): Mp: 145 °C; IR (KBr, cmꢁ1
)
m
max: 2926,
1727, 1594, 1504, 1477, 1416, 1380, 1328; 1H NMR (300 MHz, CDCl3) d: 1.81 (s,
6H), 6.09 (s, 2H, OCH2,), 7.14 (s, 1H, Ar–H), 7.57 (s, 1H, Ar–H), 8.65 (s, 1H); 13
18. Majetich, S. A.; Jin, Y. Science 1999, 284, 470.
19. Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757.
20. Couto, G. G.; Klein, J. J.; Schreiner, W. H.; Mosca, D. H.; Oliveira, A. J. A.; Zarbin,
A. J. G. J. Colloid. Interf. Sci. 2007, 311, 461. Preparation of Ni nanoparticles: Nickel
nanoparticles were synthesized in ethylene glycol from NiCl2.6H2O (2ꢂ10-4M)
and NaBH4 by the modified polyol process20 and polyethylene glycol (PEG-
4000) was used as the stabilizing agent. Our results are in accordance with the
reported one and match satisfactorily with the conventional protocol.
21. Alonso, F.; Riente, P.; Yus, M. Tetrahedron 2008, 64, 1847.
22. Alonso, F.; Riente, P.; Yus, M. Tetrahedron Lett. 2008, 49, 1939.
23. Kidwai, M.; Mishra, N. K.; Bansal, V.; Kumar, A.; Mozumdar, S. Catal. Commun.
2008, 9, 612.
C
NMR (75 MHz, CDCl3) d: 27.7, 102.7, 104.7, 111.7, 114.6, 121.7, 125.3, 147.1,
152.3, 156.4, 162.6. [M+H]+354, 356 [M+2]+.
4-(4-Hydroxy-3-methoxyphenyl)-4,6,7,8-tetrahydro-3H-chromene-2,5-dione
(5i): Mp: 124 °C; IR (KBr, cmꢁ1
) mmax: 3336, 2956, 2918, 1782, 1644, 1516,
1460, 1448, 1425, 1380; 1H NMR (400 MHz, CDCl3) d: 2.1 (m, 2H), 2.43–2.45
(m, 2H), 2.64–2.66 (m, 2H), 2.90–2.91 (m, 2H), 3.85 (s, 3H, OCH3), 4.23–4.25
(m, 1H), 5.55 (s, 1H, OH), 6.58–6.60 (m, 1H, Ar–H), 6.70–6.71 (m, 1H, Ar–H),
6.78–6.80 (m, 1H, Ar–H). 13C NMR (75 MHz, CDCl3) d: 20.6, 27.3, 33.4, 36.3,
36.7, 55.8, 109.6, 114.6, 118.6, 132.4, 144.9, 146.7, 166.0, 167.1, 196.4.
[M+H]+289.
24. Alonso, F.; Riente, P.; Yus, M. Synlett 2008, 1289.
4-(2,5-Dimethoxyphenyl)-3,4-dihydropyrano[3,2-c]chromene-2,5-dione (6c):
25. Alonso, F.; Riente, P.; Yus, M. Eur. J. Org. Chem. 2008, 4908.
26. Saxena, A.; Kumar, A.; Mozumdar, S. J. Mol. Catal. A: Chem. 2007, 269, 35.
27. Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett. 2009,
50, 1754.
Mp: 160 °C; IR (KBr, cmꢁ1
) mmax: 2922, 1776, 1731, 1649, 1504, 1375, 1237;
1H NMR (400 MHz, DMSO-d6) d: 2.69–2.74 (m, 1H), 3.43–3.47 (m, 1H), 3.57 (s,
3H, OMe), 3.60 (s, 3H, OMe), 4.31–4.33 (m, 1H), 6.68–6.87 (m, 3H, Ar–H), 7.41–
7.43 (m, 2H, Ar–H), 7.64–7.68 (m, 1H, Ar–H), 7.81–7.83 (m, 1H, Ar–H); 13C NMR
(100 MHz, DMSO-d6) d: 31.3, 36.0, 55.8, 56.6, 106.6, 111.2, 112.2, 116.0, 116.8,
123.9, 124.7, 128.3, 132.8, 151.7, 153.2, 154.0, 156.2, 164.1, 174.0; [M]+336.
4-(4-Chlorophenyl)-7-methyl-3,4-dihydropyrano[4,3-b]pyran-2,5-dione (7a):
28. Khurana, J. M.; Vij, K. Catal. Lett. 2010, 138, 104.
29. Khurana, J. M.; Sneha; Vij, K. Synth. Commun. 2011, article in press.
30. General procedure for the synthesis of 5-arylidene Meldrum’s acids (3): Aldehyde
(1, 2 mmol) was added to a well stirred dispersion of nickel nanoparticles in
ethylene glycol [2 mL of dispersion (0.0235 wt % of Ni)/0.1 g of 1] in a 25 mL
R.B. flask. To it, Meldrum’s acid (2, 2 mmol) was added and the contents were
stirred at room temperature till a solid product separates out. Completion of
the reaction was monitored by TLC using ethyl acetate: petroleum ether
(40:60) as the eluent. All the reactions were invariably complete in 10 min.
Upon completion, the reaction mixture was diluted with water, the solid
product was filtered, washed with water, dried and recrystallised from ethanol.
5-Arylidene Meldrum’s acids were obtained as identified by their mp and
spectral data.
Mp: 194 °C; IR (KBr, cmꢁ1 max: 2863, 1771, 1737, 1317, 1202; 1H NMR
) m
(400 MHz, DMSO-d6) d: 1.53–1.85 (m, 5H), 3.95 (s, 1H), 7.52 (m, 2H, Ar–H),
7.97 (m, 2H, Ar–H), 8.30 (s, 1H); 13C NMR (100 MHz, DMSO-d6) d: 26.8, 30.5,
40.1, 90.6, 100.5, 128.4, 130.9, 133.5, 134.5, 156.0, 163.2, 168.7, 205.9;
[M]+290.
4-(3,4-Dimethoxyphenyl)-3,4-dihydrobenzo[g]chromene-2,5,10-trione (8d):
Mp: 188–190 °C; IR (KBr, cmꢁ1 2924, 1674, 1587, 1337; 1H NMR
) mmax:
(400 MHz, DMSO-d6) d: 2.84–2.87 (m, 1H), 3.33- 3.37 (m, 1H), 3.64 (s, 3H,
OCH3), 3.69 (s, 3H, OCH3), 4.46–4.48 (m, 1H), 6.67–6.69 (m, 1H, Ar–H), 6.76–
6.78 (m, 1H, Ar–H), 6.87–6.88 (m, 1H, Ar–H), 7.83–7.85 (m, 2H, Ar–H), 7.93–
7.94 (m, 1H, Ar–H), 8.04–8.05 (m, 1H, Ar–H). 13C NMR (100 MHz, DMSO-d6) d:
34.0, 39.0, 55.5, 55.6, 111.1, 118.3, 125.1, 126.0, 131.0, 131.7, 134.3, 134.6,
148.3, 149.1, 152.0, 165.7, 177.2, 182.8. [M+1]+365.
General procedure for the enol lactonization of 3 with active methylenes (4) to
yield the corresponding enol lactone derivatives (5–8): In a typical experiment, 5-
arylidene Meldrum’s acid (3, 2 mmol) was added to a well stirred dispersion of