nucleophilic aromatic substitution9 with sodium hy-
drosulfide and subsequent cyclization at high tempera-
tures (160À190 °C). Only few catalytic processes have
been reported in the literature to circumvent these
strong basic and harsh reaction conditions. Typical
promotors or catalysts are strong electrophiles, such
as AuCl,10 stoichiometric cupric halides,11 halonium
ions,3b,12 and strong acids (p-toluene sulfonic acid).13
The cyclization requires the preformation of the corre-
sponding alkynyl arylthioether, which subsequently
undergoes endo-dig cyclization onto the alkyne moiety.
Still, these reactions require the prerequisite formation
of the aryl-thiols prior to cyclization. Efficient meth-
odologies have been reported for the coupling of aryl
iodides and bromides with dihydrosulfide surrogates,
e.g. xanthate5a and tris(isopropyl)silylthiol,5c to furnish
unsymmetric biarylthioether according to a consecu-
tive additionÀdeprotectionÀaddition protocol. How-
ever, the use of thiourea (1) as a surrogate4,5a,5b,14 in the
coupling of arylbromides seems appealingsince itiseasyto
handle and not affected by air or moisture. Yet, a palla-
dium-catalyzed transformation has not been reported so
far. This report concentrates on the application of 1 as a
dihydrosulfide surrogate in a domino reaction15 to access
Scheme 1. Domino CÀS Bond Formation Cross-Coupling/Cy-
clization Reaction
symmetrical biarylthioether, benzo[b]thiophenes, and
thieno[3,2-b]thiophenes in one step (Scheme 1).16
First, the aryl thiol5d,6e,17 is generated in situ. Subsequent
coupling with an aryl halide results in thioethers (Scheme 1a).
Alternatively, in the presence of an alkyne an 5-endo-
dig cyclization of the thiolate yields benzo[b]phiophene
or thieno[3,2-b]thiophene derivatives (Scheme 1b). This in
situ cross-coupling/cyclization sequence12a,18 represents
the first palladium-catalyzed one-pot synthesis of sulfur-
heterocycles3b,10À13 making these valuable structures
readily available.
The catalyst system was optimized for the synthesis of
symmetrical biarylthioether ensuring efficient CÀS bond
formation (see Supporting Information for details). The
optimal catalyst system for the coupling of thiourea (1) with
aryl halides (2) to form the symmetrical thioethers (3)
consisted of the tridentate ligand Triphos (L), tris-
(dibenzylideneacetone)dipalladium(0) ([Pd2dba3]), ceasium
carbonate as base, and 1,4-dioxane as solvent (Table 1). In
general, the reaction can be applied to aryl iodides and
bromides, while aryl chlorides proved unreactive (entry 1,
2ac). Diphenylsulfide (3a) was obtained from the coupling
of iodo- (2aa) or bromobenzene (2ab) with 1 in 80% and
74% yield respectively (entry 1).
Interestingly, sterically encumbered aryl bromides (2b
and 2c) were converted into the thioethers 3b and 3c in
excellent yields (93% and 98% yield, entries 2 and 3). The
coupling of polyaromatic naphthyl derivatives (2d and 2e)
underwent thioether formation in good to excellent yields
(77% and 92% yield, entries 4 and 5). The coupling of
electron-rich thiophene 2f (entry 6) proceeded in 44% yield
indicating that the electronic nature of the aryl halide is
crucial for efficient coupling. Indeed, electron-rich aryl iodides
and bromides (2ga, 2gb, entry 7) furnished the thioether 3g
in 18% yield. Interestingly only the free amino functionality
(6) (a) Shu, Q.; Kun, X.; Junsheng, Q. Chin. J. Chem. 2010, 28, 1441–
1443. (b) Herrero, M. T.; SanMartin, R.; Dominguez, E. Tetrahedron
2009, 65, 1500–1503. (c) Carril, M.; SanMartin, R.; Dominguez, E.;
Tellitu, I. Chem.;Eur. J. 2007, 13, 5100–5105. (d) Ley, S. V.; Thomas,
A. W. Angew. Chem. 2003, 115, 5558–5607. Angew. Chem., Int. Ed. 2003,
42, 5400–5449. (e) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4,
3517–3520.
(7) For CÀS coupling catalyzed by other transition metals, see: (a)
Yuan, Y.; Thome, I.; Kim, S. H.; Chen, D. T.; Beyer, A.; Bonnamour, J.;
Zuidema, E.; Chang, S.; Bolm, C. Adv. Synth. Catal. 2010, 352, 2892–
2898. (b) Varala, R.; Ramu, E.; Alam, M. M.; Adapa, S. R. Synlett 2004,
1747–1750. (c) Bradshaw, J. S.; Chen, E. Y.; South, J. A.; Hales, R. H. J.
Org. Chem. 1972, 37, 2051–2052.
(8) (a) Cho, C.-H.; Neuenswander, B.; Lushington, G. H.; Larock,
R. C. J. Comb. Chem. 2009, 11, 900–906. (b) Okamoto, T.; Kudoh, K.;
Wakamiya, A.; Yamaguchi, S. Org. Lett. 2005, 7, 5301–5304. (c)
Sashida, H.; Yasuike, S. J. Heterocycl. Chem. 1998, 35, 725–726. (d)
Sashida, H.; Sadamori, K.; Tsuchiya, T. Synth. Commun. 1998, 28,
713–727.
(9) (a) Shinamura, S.; Miyazaki, E.; Takimiya, K. J. Org. Chem.
2010, 75, 1228–1234. (b) Kashiki, T.; Shinamura, S.; Kohara, M.;
Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H. Org. Lett.
2009, 11, 2473–2475.
(10) (a) Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org.
Lett. 2007, 9, 4081–4083. (b) Nakamura, I.; Sato, T.; Yamamoto, Y.
Angew. Chem. 2006, 118, 4585–4587. Angew. Chem., Int. Ed. 2006, 45,
4473–4475.
(11) Lu, W. D.; Wu, M. J. Tetrahedron 2007, 63, 356–362.
(12) (a) Mehta, S.; Larock, R. C. J. Org. Chem. 2010, 75, 1652–1658.
(b) Cho, C.-H.; Neuenswander, B.; Larock, R. C. J. Comb. Chem. 2010,
12, 278–285. (c) Yue, D. W.; Larock, R. C. J. Org. Chem. 2002, 67, 1905–
1909. (d) Yue, D.; Larock, R. C. Tetrahedron Lett. 2001, 42, 6011–6013.
(13) Jacubert, M.; Provot, O.; Peyrat, J. F.; Hamze, A.; Brion, J. D.;
Alami, M. Tetrahedron 2010, 66, 3775–3787.
(16) (a) Zhang, J.; Medley, C. M.; Krause, J. A.; Guan, H. R.
Organometallics 2010, 29, 6393–6401. (b) Correa, A.; Carril, M.; Bolm,
C. Angew. Chem. 2008, 120, 2922–2925. Angew. Chem., Int. Ed. 2008, 47,
2880–2883. (c) Zhang, Y. G.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007,
9, 3495–3498. (d) Wong, Y. C.; Jayanth, T. T.; Cheng, C. H. Org. Lett.
2006, 8, 5613–5616.
(17) (a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534–1544. (b) Itoh,
T.; Mase, T. Org. Lett. 2004, 6, 4587–4590. (c) Murata, M.; Buchwald,
S. L. Tetrahedron 2004, 60, 7397–7403.
(18) (a) Yao, P. Y.; Zhang, Y.; Hsung, R. P.; Zhao, K. Org. Lett.
2008, 10, 4275–4278. (b) Sanz, R.; Castroviejo, M. P.; Guilarte, V.;
Perez, A.; Fananas, F. J. J. Org. Chem. 2007, 72, 5113–5118. (c) Tang,
Z. Y.; Hu, Q. S. Adv. Synth. Catal. 2006, 348, 846–850. (d) Ackermann,
L. Org. Lett. 2005, 7, 439–442. (e) Kaspar, L. T.; Ackermann, L.
Tetrahedron 2005, 61, 11311–11316.
(14) (a) Reddy, V. P.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2010,
75, 8720–8723. (b) Kienle, M.; Unsinn, A.; Knochel, P. Angew. Chem.
2010, 122, 4860–4864. Angew. Chem., Int. Ed. 2010, 49, 4751–4754. (c)
Takagi, K. Chem. Lett. 1985, 1307–1308.
(15) (a) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions
in Organic Synthesis; Wiley-VCH Verlag: Weinheim, 2006. (b) Ackermann,
L.; Althammer, A. Angew. Chem. 2007, 119, 1652–1654. Angew. Chem.,
Int. Ed. 2007, 46, 1627–1629. (c) Zezschwitz, P. v.; Meijere, A. d. Top.
Organomet. Chem. 2006, 19, 49–89. (d) de Meijere, A.; Von Zezschwitz,
€
P.; Brase, S. Acc. Chem. Res. 2005, 38, 413–422. (e) de Meijere, A.; von
Zezschwitz, P.; Nuske, H.; Stulgies, B. J. Organomet. Chem. 2002, 653,
129–140. (f) Tietze, L. F. Chem. Rev. 1996, 96, 115–136.
Org. Lett., Vol. 13, No. 15, 2011
4101