3366
J. J. Park et al. / Tetrahedron Letters 52 (2011) 3361–3366
4545; (d) Bühlmann, P.; Nishizawa, S.; Xiao, K. P.; Umezawa, Y. Tetrahedron
1997, 53, 1647; (e) Benito, J. M.; Gómez-García, M.; Blanco, J. L. J.; Mellet, C. O.;
Fernández, J. M. G. J. Org. Chem. 2001, 66, 1366; (f) Dryfe, R. A. W.; Hill, S. S.;
Davis, A. P.; Joos, J.-B.; Roberts, E. P. L. Org. Biomol. Chem. 2004, 2, 2716; (g) Fan,
E.; Van Arman, S. A.; Kincaid, S.; Hamilton, A. D. J. Am. Chem. Soc. 1993, 115, 369.
5. (a) Sessler, J. L.; Camiolo, S.; Gale, P. A. Coord. Chem. Rev. 2003, 240, 17; (b) Gale,
P. A. Chem. Commun. 2005, 3761–3772; (c) Panda, P. K.; Lee, C.-H. J. Org. Chem.
2005, 70, 3148.
dihydrogenphosphate, which have low basicity, could deprotonate
receptor 2. High acidity of receptor 2 makes it impossible to
distinguish the anions it is interacting with just through naked
eye (Fig. 4b). In the case of receptor 3, it was interacting with the
anion only through hydrogen bonds. Therefore, naked detection
of anions was impossible with the receptor 3 (Fig. 5c).
6. Wichmann, K.; Antonioli, B.; Söhnel, T.; Wenzel, M.; Gloe, K.; Gloe, K.; Price, J.
R.; Lindoy, L. F.; Blake, A. J.; Schröder, M. Coord. Chem. Rev. 2006, 250, 2987.
7. (a) Chmielewski, M. J.; Jurczak, J. Chem. Eur. J. 2005, 11, 6080; (b) Bao, X.; Zhou,
Y. Sens. Actuators, B: Chem. 2010, 147, 434; (c) Kang, S. O.; Linares, J. M.; Powell,
D.; VanderVelde, D.; Bowman-James, K. J. Am Chem. Soc. 2003, 125, 10152; (d)
Kondo, S.-i.; Hiraoka, Y.; Kurumatani, N.; Yano, Y. Chem. Commun. 2005, 1720;
(e) Xie, H.; Yi, S.; Wu, S. J. Chem. Soc., Perkin Trans. 2 1999, 2751; (f) Sessler, J. L.;
An, D.; Cho, W.-S.; Lynch, V.; Marquez, M. Chem. Eur. J. 2005, 11, 2001; (g)
Chellappan, K.; Singh, N. J.; Hwang, I.-C.; Lee, J. W.; Kim, K. S. Angew. Chem., Int.
Ed. 2005, 44, 2899; (h) Nishiyabu, R.; Anzenbacher, P., Jr. J. Am. Chem. Soc. 2005,
127, 8270.
8. (a) Amedola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res.
2006, 39, 343–353; (b) Dang, N. T.; Park, J. J.; Jang, S.; Kang, J. Bull. Korean Chem.
Soc. 2010, 31, 1204–1208; (c) Kang, J.; Lee, Y. J.; Lee, S. K.; Lee, J. H.; Park, J. J.;
Kim, Y.; Kim, S.-J.; Kim, C. Supramol. Chem. 2010, 22, 267.
9. Kang, J.; Jang, S. P.; Kim, Y.-H.; Lee, J. H.; Park, E. B.; Lee, H. G.; Kim, J. H.; Kim, Y.;
Kim, S.-J.; Kim, C. Tetrahedron Lett. 2010, 51, 6658.
In summary, we designed and synthesized new anion receptors
1, 2, and 3 which have different N–H polarity. The receptor 1,
which has medium polarity, showed the most selective color
change for the fluoride ion. However, the most polar receptor 2
showed color changes for all the anions it was interacting with
and the least polar receptor 3 did not induce any color change
for any anions. Therefore, fine tuning of receptor polarity could
be a good strategy for the designing of selective anion receptor
and made it possible to develop a selective naked eye anion
receptor.
Acknowledgment
10. Synthesis of compound 6: To a solution of 4-nitroaniline (326 mg, 2.4 mmol), 8-
aminoquinoline (341 mg, 2.4 mmol), and diisopropylethylamine (0.81 mL,
4.8 mmol) in dichloromethane under nitrogen was added oxalyl chloride
(0.20 ml, 2.36 mmol) dropwise and stirred for 3 h. 246 mg of 2 and 4 were
This research was supported by a Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2010-0021333).
precipitated as
a mixture while the compound 5 was soluble in
dichloromethane. After the solid was filtered, the solid mixture was treated
with dibutyldicarbonate in dichloromethane (30 mL) to give BOC protected
compounds of 2 and 4. Silica gel chromatography on the silica gel (initially
hexane/ethyl acetate = 5:1 later hexane/ethyl acetate = 1:1) gave 134 mg of
BOC protected compounds 6. 1H NMR (CDCl3, 500 MHz): 8.9 (s, 1H), 8.3 (d,
J = 8.5 Hz, 2H), 8.2 (d, J = 8.0 Hz, 1H), 7.9 (d, J = 8.0 Hz, 2H), 7.6 (m, 3H), 7.4 (d,
J = 3.5 Hz, 1H), 1.4 (s, 9H). 1.3 (s, 9H). Synthesis of compound 2: To a solution of
the compound 6 (134 mg, 0.24 mmol) in dichloromethane (5 mL) was added
Supplementary data
Supplementary data associated with this article can be found, in
trifluoroacetic acid (74 lL) and stirred for 6 h. Filtration of the solid and
References and notes
washing with acetone gave the compound 2 (78 mg) in 96% yield. 1H NMR
(DMSO-d6, 500 MHz) 11.6 (s, 1H), 11.5 (s, 1H), 9.0 (dd, J = 4 Hz, 1.5 Hz, 1H), 8.7
(dd, J = 7.5 Hz, 1 Hz, 1H), 8.5 (dd, J = 8.5 Hz, 1.5 Hz, 1H), 8.3 (d, J = 9 Hz, 2H), 8.2
(d, J = 9 Hz, 2H), 7.8 (dd, J = 8.25 Hz, 1 Hz, 1H), 7.7 (m, 2H). 13C NMR (DMSO-d6,
500 MHz) 158.8, 156.8, 149.3, 143.4, 143.3, 137.9, 136.5, 132.3, 127.7, 126.6,
124.3, 123.2, 122.3, 120.6, 116.1. HR-MS (ESI): calcd for C17H12N4O4+H m/e
337.0938; found 337.0933. Synthesis of compound 3: To a solution of the
compound 1 (200 mg, 0.62 mmol) in dried THF (3 mL) under nitrogen at 0 °C
1. (a) Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457; (b) Haugland, R. P.
The Handbook. A Guide to Fluorescent Probes and Labeling Technologies, tenth ed.;
Molecular Probes Inc.: Eugene, OR, 2005; (c)Anion Sensing; Stibor, I., Ed.;
Springer: Berlin, 2005; (d) Lhoták, P. Top. Curr. Chem. 2005, 255, 65; (e)
Matthews, S. E.; Beer, P. D. Supramol. Chem. 2005, 17, 411; (f) Martinez-Manez,
R.; Sancenon, F. Chem. Rev. 2003, 103, 4419; (g) Beer, P. D.; Gale, P. A. Angew.
Chem., Int. Ed. 2001, 40, 486; (h) Haryley, J. H.; James, T. D.; Ward, C. J. J. Chem.
Soc., Perkin Trans. 1 2000, 19, 3155; (i) de Silva, A. P.; Nimal Gunaratne, H. Q.;
Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E.
Chem. Rev. 1997, 97, 1515; (j)Fluorescent Chemosensors for Ion and Molecule
Recognition; Czarnik, A. W., Ed.; American Chemical Society Books:
Washington, DC, 1993.
was added borane dimethyl sulfide (118 lL, 1.24 mmol) and stirred for 30 min.
Then the reaction mixture was refluxed for 12 h. To a reaction mixture cooled
to room temperature was added distilled water (3 mL) and stirred for 30 min.
Then the reaction mixture was poured to dichloromethane (15 mL) and
washed with distilled water (20 mL) three times. After the dichloromethane
layer was dried with MgSO4, the solvent was evaporated. Recrystallization of
2. (a) Kwon, J. Y.; Jang, Y. J.; Kim, S. K.; Lee, K.-H.; Kim, J. S.; Yoon, J. J. Org. Chem.
2004, 69, 5155; (b) Kim, S. K.; Singh, N. J.; Kim, S. J.; Kim, H. G.; Kim, J. K.; Lee, J.
W.; Kim, K. S.; Yoon, J. Org. Lett. 2003, 5, 2083.
the residue in methanol gave unreacted compound
1
(120 mg).
Chromatography on the silica gel (hexane/ethyl acetate = 1:1) gave the desire
compound 3 (35 mg) in 46% yield based on recovered starting material. 1H
NMR (DMSO-d6, 500 MHz) 8.7 (dd, J = 4 Hz, 1.5 Hz, 1H), 8.2 (dd, J = 8.5 Hz,
1.5 Hz, 1H), 8.0(d, J = 9.5 Hz, 2H), 7.5 (m, 2H), 7.4 (t, J = 8.0 Hz, 1H), 7.1 (d,
J = 8.0 Hz, 1H), 6.8 (d, J = 7.5 Hz, 1H), 6.7 (d+m, J = 9.5 Hz, 2H+1H from amine),
3.5 (m, 4H). 13C NMR (DMSO-d6, 500 MHz) 154.6, 146.9, 144.2, 137.5, 135.9,
135.7, 128.4, 127.8, 126.2, 121.7, 113.4, 104.2, 41.5, 41.3. HR-MS (ESI): calcd for
3. (a) Kim, Y. K.; Lee, H. N.; Singh, N. J.; Choi, H. J.; Xue, J. Y.; Kim, K. S.; Yoon, J.;
Hyum, M. H. J. Org. Chem. 2008, 73, 301; (b) Boiocchi, M.; Boca, L. D.; Gomez, D.
E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507; (c)
Werner, F.; Schneider, H.-J. Helv. Chim. Acta 2000, 83, 465; (d) Snellink-Ruel, B.
H. M.; Antonisse, M. M. G.; Engbersen, J. F. J.; Timmerman, P.; Reinhoudt, D. N.
Eur. J. Org. Chem. 2000, 165; (e) Jun, E. J.; Swamy, K. M. K.; Bang, H.; Kim, S.-J.;
Yoon, J. Tetrahedron Lett. 2006, 47, 3103; (f) Ayling, A. J.; Perez-Payan, M. N.;
Davis, A. P. J. Am. Chem. Soc. 2001, 123, 12716.
4. (a) Gunnlaugsson, T.; Davis, A. P.; Hussey, G. M.; Tierney, J.; Glynn, M. Org.
Biomol. Chem. 2004, 2, 1856; (b) Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.;
Glynn, M. Org. Biomol. Chem. 2005, 3, 48; (c) Kim, S. K.; Singh, N. J.; Kim, S. J.;
Swamy, K. M. K.; Kim, S. H.; Lee, K. H.; Kim, K. S.; Yoon, J. Tetrahedron 2005, 61,
C
17H164N4O2+H m/e 309.1352; found, 309.1345.
11. Pèrez-Casas, C.; Yatsimirsky, A. K. J. Org. Chem. 2008, 73, 2275.
12. See Supplementary data.
13. Benesi, H.; Hildebrand, H. J. Am. Chem. Soc. 1949, 71, 2703.
14. Hynes, M. J. J. Chem. Soc., Dalton Trans. 1993, 311.