dye 3 are induced by coordination of Hg2+ to the lone pair
electrons on the sulfur atom of the benzo[2,1,3]thiadiazole
unit. In order to further demonstrate the importance of the
benzo[2,1,3]thiadiazole unit for the sensing ability of probe 3,
the response of dye 4, without a BDT unit, to Hg2+ was also
measured (see ESIz). Under the same experimental conditions,
4 showed no significant response to Hg2+. This further
demonstrates the interaction of Hg2+ with the sulfur atom.
We also studied the reversibility of the probe (see ESIz). In
CH3CN solution, the emission intensity of 3 is decreased after
adding Hg2+. However, it cannot be recovered after adding
excess Na2S, which has a stronger binding ability towards
Hg2+. Furthermore, the 1H NMR spectrum of 3 becomes very
complicated after binding with Hg2+ (see ESIz). At present, it
is still difficult to determine the accurate sensing mechanism.
However, according to the irreversibility of the probe, the
Chem., 2003, 51, 838; (d) M. Nendza, T. Herbst, C. Kussatz and
A. Gies, Chemosphere, 1997, 35, 1875; (e) A. Renzoni, F. Zino and
E. Franchi, Environ. Res., 1998, 77, 68.
2 (a) T. W. Clarkson, L. Magos and G. J. Myers, N. Engl. J. Med.,
2003, 349, 1731; (b) E. M. Nolan and S. J. Lippard, Chem. Rev.,
2008, 108, 3443; (c) R. V. Burg, J. Appl. Toxicol., 1995, 15, 483.
3 Guidelines for Drinking-Water Quality, World Health Organization,
Geneva, 3rd edn, 2004, pp. 188.
4 (a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and
T. E. Rice, Chem. Rev., 1997, 97, 1515; (b) B. Valeur and
I. Leray, Coord. Chem. Rev., 2000, 205, 3.
5 (a) Q. Zhao, F. Y. Li and C. H. Huang, Chem. Soc. Rev., 2010,
39, 3007; (b) M. Suresh, S. Mishra, S. K. Mishra, E. Suresh,
A. K. Mandal, A. Shrivastav and A. Das, Org. Lett., 2009,
11, 2740; (c) Q. Zhao, S. J. Liu, F. Y. Li, T. Yi and
C. H. Huang, Dalton Trans., 2008, 3836; (d) X. L. Zhang,
Y. Xiao and X. H. Qian, Angew. Chem., Int. Ed., 2008,
47, 8025; (e) M. Suresh, A. Ghosh and A. Das, Chem. Commun.,
2008, 3906; (f) H. F. Shi, S. J. Liu, H. B. Sun, W. J. Xu, Z. F. An,
J. Chen, S. Sun, X. M. Lu, Q. Zhao and W. Huang, Chem.–Eur.
J., 2010, 16, 12158; (g) M. Santra, D. Ryu, A. Chatterjee,
S. K. Ko, I. Shin and K. H. Ahn, Chem. Commun., 2009, 2115;
(h) S. J. Liu, C. Fang, Q. Zhao, Q. L. Fan and W. Huang,
Macromol. Rapid Commun., 2008, 29, 1212; (i) Q. Zhao,
T. Y. Cao, F. Y. Li, X. H. Li, H. Jing, T. Yi and C. H. Huang,
Organometallics, 2007, 26, 2077.
absorption and emission spectral response to Hg2+ and
1
the complicated H NMR spectrum of 3 after adding Hg2+
,
we tentatively attribute the sensing mechanism to the decom-
position of dye 3 induced by its binding with Hg2+. Further
investigation of the sensing mechanism is under way.
In conclusion, we have realized an excellent colorimetric
and fluorescent probe for Hg2+ based on a BODIPY trimer
with a benzo[2,1,3]thiadiazole bridge as a binding site
utilizing the specific interaction between Hg2+ and sulfur.
It can work as a highly selective probe for Hg2+, being
detected by the naked eye with evident solution color and
photoluminescence changes. The binding of Hg2+ induces an
evident blue-shift of the absorption spectrum, resulting in a
significant change of solution color from purple to yellow. A
pronounced ON–OFF-type Hg2+-induced fluorescence
quenching behavior is also observed. Interestingly, selective
excitation at 375 and 530 nm induced different fluorescent
responses to Hg2+. The detection performances realized
by visible light excitation (530 nm) effectively minimized
background fluorescence and improved the signal-to-noise
ratio. These results demonstrate the excellent sensing ability
of probe 3 for Hg2+. Future work will focus on how to
realize the excellent sensing performance of 3 in water
through the chemical modification of this probe.
6 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int.
Ed., 2008, 47, 1184.
7 (a) S. Atilgan, T. Ozdemir and E. U. Akkaya, Org. Lett., 2008,
10, 4065; (b) R. Guliyev, A. Coskun and E. U. Akkaya, J. Am.
Chem. Soc., 2009, 131, 9007; (c) S. C. Yin, V. Leen, S. V. Snick,
N. Boens and W. Dehaen, Chem. Commun., 2010, 46, 6329.
8 (a) Y. P. Zou, M. X. Wan, G. Y. Sang, M. F. Ye and Y. Li, Adv.
Funct. Mater., 2008, 18, 2724; (b) M. H. Ha-Thi, M. Penhoat,
V. Michelet and I. Leray, Org. Lett., 2007, 9, 1133; (c) Y. Yang,
X. J. Gou, J. Blecha and H. S. Cao, Tetrahedron Lett., 2010,
51, 3422; (d) X. J. Xue, F. Wang and X. G. Liu, J. Am. Chem. Soc.,
2008, 130, 3244.
9 (a) Y. Cakmak and E. U. Akkaya, Org. Lett., 2009, 11, 85;
(b) G. D. Scholes, K. P. Ghiggino, A. M. Oliver and
M. N. Paddon-Row, J. Am. Chem. Soc., 1993, 115, 4345.
10 M. Liras, J. B. Prieto, M. Pintado-Sierra, F. L. Arbeloa, I. Garcia-
Moreno, A. Costela, L. Infantes, R. Sastre and F. Amat-Guerri,
Org. Lett., 2007, 9, 4183.
11 G. E. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991.
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox,
H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.
13 A. J. Zucchero, P. L. McGrier and U. H. F. Bunz, Acc. Chem. Res.,
2009, 43, 397.
Acknowledgements
This work was financially supported by the National Basic
Research Program of China (973 Program, 2009CB930601),
the National Natural Science Foundation of China
(50803028 and 20804019), the Natural Science Foundation
of Jiangsu Province of China (BK2009427), the Natural
Science Fund for Colleges and Universities in Jiangsu
Province (10KJB510010), the Scientific and Technological
Activities for Returned Personnel in Nanjing City (NJ209001)
and Nanjing University of Posts & Telecommunications
(NY208045 and NY210029).
14 B. Valeur, Molecular Fluorescence, Wiley-VCH, Weinheim, Germany,
2002.
15 (a) C. Amiot, S. Xu, S. Liang, L. Pan and J. Zhao, Sensors, 2008,
8, 3082; (b) R. M. Hoffman and M. Yang, Nat. Biotechnol., 2005,
23, 790; (c) K. Rurack, M. Kollmannsberger and J. Daub, New J.
Chem., 2001, 25, 289.
References
1 (a) J. M. Benoit, W. F. Fitzgerald and A. W. Damman, Environ.
Res., 1998, 78, 118; (b) H. H. Harris, I. J. Pickering and
G. N. George, Science, 2003, 301, 1203; (c) J. M. Llobet,
G. Falco
´
, C. Casas, A. Teixido
´
and J. L. Domingo, J. Agric. Food
16 R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 1194–1197 1197