Journal of the American Chemical Society
COMMUNICATION
(40.0 nm2 per molecule) is observed (Figure 6b). The repeating
unit can be viewed as a rhombic assembly of four pentagons with
corners pointing to the center (blue rhombus in Figure 6b,
middle), and a nearly rectangular unit cell can be indexed. The
molecules pack in a crystal with plane group p2. All five backbone
sides of each pentagon contribute to the intermolecular interac-
tions via interdigitating alkoxy substituents. As for the less dense
packing, the molecules can be viewed as arranged in rows that
are aligned along the three main symmetry axes of the HOPG.
Along two directions, four pentagons [1]5 are connected via interdigi-
tated side chains to form quasi-linear quadruples, discriminated
by interruptsresultingfrom noncomplementaryterminal pentagon
corners of adjacent quadruples, pointing toward each other.
Along the third direction, pentagons connected by interdigitated
side chains assemble to a stepped straight line (* in Figure 6b),
where each dimer of pentagons [1]5 is slightly translated in
parallel. The orientations of the molecules in Figure 6a and b are
not congruent with each other. The intercalation of a seventh
molecule per unit cell in Figure 6a would decrease the required
area to 47.3 nm2 per molecule, still 18% larger than the average
spatial requirement of each molecule in Figure 6b. Thus, the
packing shown in Figure 6a cannot be transferred to the denser
pattern (Figure 6b) without general reorientation of the mol-
ecules and changes of the intermolecular distances.
’ ACKNOWLEDGMENT
Financial support by the DFG, the SFB 624, and the Volks-
wagenStiftung is gratefully acknowledged.
’ REFERENCES
(1) (a) De Feyter, S.; De Schryver, F. C. Chem. Soc. Rev. 2003,
32, 139. (b) Barth, J. V.; Costantini, G.; Kern, K. Nature 2005, 437, 671.
(2) Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.; Ichikawa, T.;
Zhang, J.; Mamdouh, W.; Sonoda, M.; De Schryver, F. C.; De Feyter, S.;
Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613.
(3) For SAMs of alkanes on HOPG see, for example: Yang, T.;
Berber, S.; Liu, J.-F.; Miller, G. P.; Tomꢀanek, D. J. Chem. Phys. 2008, 128,
124709 and references therein.
(4) (a) Lazzaroni, R.; Calderone, A.; Brꢀedas, J. L.; Rabe, J. P. J. Chem.
Phys. 1997, 107, 99. (b) Sautet, P. Chem. Rev. 1997, 97, 1097.
(5) Confinement of TCB is observed for [1]4 and [1]6 (medium
bright color encoding, Figures 3c and 5a; see Supporting Information).
(6) (a) H€oger, S.; Bonrad, K.; Mourran, A.; Beginn, U.; M€oller, M.
J. Am. Chem. Soc. 2001, 123, 5651. (b) Tahara, K.; Johnson, C. A., II;
Fujita, T.; Sonoda, M.; De Schryver, F. C.; De Feyter, S.; Haley, M. M.;
Tobe, Y. Langmuir 2007, 23, 10190. (c) Lei, S.; Tahara, K.; De Schryver,
F. C.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. Angew. Chem. 2008,
120, 3006. Angew. Chem., Int. Ed. 2008, 47, 2964.
(7) Jester, S.-S.; Shabelina, N.; Le Blanc, S. M.; H€oger, S. Angew.
Chem. 2010, 122, 6237; Angew. Chem., Int. Ed. 2010, 49, 6101.
(8) (a) Pan, G.-B.; Cheng, X.-H.; H€oger, S.; Freyland, W. J. Am.
Chem. Soc. 2006, 128, 4218. (b) Mena-Osteritz, E.; B€auerle, P. Adv.
Mater. 2006, 18, 447. (c) Chen, T.; Pan, G.-B.; Wettach, H.; Fritzsche,
M.; H€oger, S.; Wan, L.-J.; Yang, H.-B.; Northrop, B. H.; Stang, P. J. J. Am.
Chem. Soc. 2010, 132, 1328.
The investigation on [1]5 gave an insight into two principally
different motives of the pattern formation of pentagons. As far as
we know, this is the first adsorption study of “soft” pentagons on
a solid substrate that unravels the question how these polygons
can cover an HOPG surface.
In summary, we have shown that the oligomeric macrocycles
behave as “molecular polygons” of different symmetries. Cyclo-
oligomerization and separation of the crude product via recGPC
has proven as an efficient method for the preparation of these
molecules, which support the formation of molecular porous and
dense long-range ordered patterns of complementary shapes.
The results allow an efficient and deliberately predictable pattern
design based on equilateral polygons and their mixtures with
periodicities up to 19 nm. In addition, the elasticity of the “soft”
molecule backbones and their flexible alkoxy fringe supports a
crystallization of pentagons. All pattern dimensions are tunable
not only by the alkoxy chain lengths (defining intermolecular
distances), but also by the backbone diameters (defined by the
length of the PEB rigid rod units and the corner building
blocks). Current studies will cover that issue and in addition
concentrate on the synthesis of nonsymmetrical macrocycles
and the investigation of their patterns. Ultimately, design rules
for classical (macroscopic) polygon tilings can be adapted to
the supramolecular surface patterning by molecular building
blocks.
(9) (a) Tahara, K.; Lei, S.; Mamdouh, W.; Yamaguchi, Y.; Ichikawa,
T.; Uji-i, H.; Sonoda, M.; Hirose, K.; De Schryver, F.; De Feyter, S.; Tobe,
Y. J. Am. Chem. Soc. 2008, 130, 6666. (b) Tahara, K.; Lei, S.; M€ossinger,
D.; Kozuma, H.; Inukai, K.; Van der Auweraer, M.; De Schryver, F. C.;
H€oger, S.; Tobe, Y.; De Feyter, S. Chem. Commun. 2008, 3897. (c)
Schmaltz, B.; Rouhanipour, A.; R€ader, H. J.; Pisula, W.; M€ullen, K. Angew.
Chem. 2009, 121, 734. Angew. Chem., Int. Ed. 2009, 48, 720. (d)
Adisoejoso, J.; Tahara, K.; Okuhata, S.; Lei, S.; Tobe, Y.; De Feyter, S.
Angew. Chem. 2009, 121, 7489. Angew. Chem., Int. Ed. 2009, 48, 7353.
(10) (a) Merz, L.; Parschau, M.; Zoppi, L.; Baldridge, K. K.; Siegel,
J. S.; Ernst, K.-H. Angew. Chem. 2009, 121, 2000. Angew. Chem., Int. Ed.
2009, 48, 1966. (b) Bauert, T.; Merz, L.; Bandera, D.; Parschau, M.; Siegel,
J. S.; Ernst, K.-H. J. Am. Chem. Soc. 2009, 131, 3460. (c) Guillermet, O.;
Niemi, E.; Nagarajan, S.; Bouju, X.; Martrou, D.; Gourdon, A.; Gauthier, S.
Angew. Chem. 2009, 121, 2004. Angew. Chem., Int. Ed. 2009, 48, 1970.
(11) Plass, K. E.; Grzesiak, A. L.; Matzger, A. J. Acc. Chem. Res. 2007,
40, 287.
(12) The nomenclature describes cyclooligomers [1]n with the
cyclooligomerization degree n.
(13) (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422. (b) Siemsen,
P.; Livingston, R. C.; Diederich, F. Angew. Chem. 2000, 112, 2740. Angew.
Chem., Int. Ed. 2000, 39, 2632.
(14) Hahn, Th., Ed. International Tables for Crystallography: Space
Group Symmetry, 5th ed.; Springer: New York, 2002.
(15) Additional patterns of [1]4 are described in the Supporting
Information.
’ ASSOCIATED CONTENT
(16) The requirement of the concentration ratio c([1]3):c([1]6) =
100:1 originates from different adsorption efficiencies and has been
reported before (cf. ref 9d). In other words, [1]6 adsorbs much more
effectively than [1]3.
S
Supporting Information. Additional STM images, ex-
b
perimental procedures and characterization for all new com-
pounds. This material is available free of charge via the Internet at
(17) Gr€unbaum, B.; Shephard, G. C. Tilings and Patterns; Freeman:
New York, 1987; pp 57À112.
’ AUTHOR INFORMATION
(18) Schilling, T.; Pronk, S.; Mulder, B.; Frenkel, D. Phys. Rev. E
2005, 71, 036138.
Corresponding Author
hoeger@uni-bonn.de; stefan.jester@uni-bonn.de
11065
dx.doi.org/10.1021/ja203536t |J. Am. Chem. Soc. 2011, 133, 11062–11065