Communication
[1]
Reviews: a) R. J. Duffy, K. A. Morris, D. Romo, Tetrahedron 2009, 65, 5879;
b) N. Arumugam, R. S. Kumar, A. I. Almansour, S. Perumal, Curr. Org.
Chem. 2013, 17, 1929; c) M. Sannigrahi, Tetrahedron 1999, 55, 9007; d)
E. M. Hussein, Bioactive Heterocycles: Synthesis & Biological Evaluation
(Eds.: K. L. Ameta, R. P. Pawar, A. J. Domb), Nova Science, Hauppauge,
NY, 2013, p. 157.
Y. Malpani, R. Achary, S. Y. Kim, H. C. Jeong, P. Kim, S. B. Han, M. Kim, C.-
K. Lee, J. Kim, Y.-S. Jung, Eur. J. Med. Chem. 2013, 62, 534.
K. Debnath, S. Pathak, A. Pramanik, Tetrahedron Lett. 2014, 55, 1743 and
references cited therein.
a) H. N. Song, M. R. Seong, H. J. Lee, J. N. Kim, Synth. Commun. 1999, 29,
2759; b) J. L. Bullington, J. H. Dodd, J. Org. Chem. 1993, 58, 4833.
C. Queffélec, F. Bailly, G. Mbemba, J.-F. Mouscadet, S. Hayes, Z. Debyser,
M. Witvrouw, P. Cotelle, Bioorg. Med. Chem. Lett. 2008, 18, 4736.
F. M. Hauser, R. P. Rhee, J. Org. Chem. 1978, 43, 178.
in the reaction (Schemes 3 and 5). This also ruled out intramo-
lecular migration of the sulfonyl group in VI from the ring car-
bon atom to the exocyclic carbon atom with concomitant sub-
stitution of the nitro group followed by intramolecular cycliza-
tion to form 7a (Scheme 3). The ratio of 7a/7l in favor of the
latter is attributable primarily to the higher concentration of p-
toluenesulfonate 8 in the medium at the start of the reaction
(Scheme 5).
Having confirmed that indenofuran 7 is an intermediate in
the formation of spiro-lactone 6 from phthalide 1 and nitroalk-
ene 5, we successfully performed a representative one-pot
transformation of 1a and 5a into 6a (Scheme 6). This involved
the complex set of cascade reactions outlined in Schemes 3
and 4, and spiro-lactone 6a was isolated in good yield (52 %).
[2]
[3]
[4]
[5]
[6]
[7]
[8]
G. A. Kraus, H. Sugimoto, Tetrahedron Lett. 1978, 19, 2263.
For reviews on H–K reaction, see: a) D. Mal, P. Pahari, Chem. Rev. 2007,
107, 1892; b) A. S. Mitchell, R. A. Russell, Tetrahedron 1995, 51, 5207;
naphthoquinones: c) R. H. Thomson, Naturally Occurring Quinones, 2nd
ed., Academic Press, London, 1971, p. 282; d) review: S. Kongsriprapan,
C. Kuhakarn, P. Deelertpaiboon, K. Panthong, P. Tuchinda, M. Pohmakotr,
V. Reutrakul, Pure Appl. Chem. 2012, 84, 1435.
[9]
For selected recent articles on the H–K reaction in natural product syn-
thesis, see: a) radermachol: F. M. Hauser, H. Yin, Org. Lett. 2000, 2, 1045;
b) vitamin K: D. Mal, K. Ghosh, S. Jana, Org. Lett. 2015, 17, 5800; c) eu-
plectin (I): D. Mal, S. R. De, Org. Lett. 2009, 11, 4398; d) griseusin B: B. J.
Naysmith, M. A. Brimble, Org. Lett. 2013, 15, 2006; e) (+)-eleutherin: S.
Gibson, O. Andrey, M. A. Brimble, Synthesis 2007, 2611; f) alkannin, shiko-
nin, and shikalkin: E. A. Couladouros, A. T. Strongilos, V. P. Papageorgiou,
Z. F. Plyta, Chem. Eur. J. 2002, 8, 1795; g) tetarimycin A antibiotics: J.-K.
Huang, T.-L. Y. Lauderdale, K.-S. Shia, Org. Lett. 2015, 17, 4248; h) (+)-
norleucosceptroid A, (–)-norleucosceptroid B, and (–)-leucosceptroid K:
C. L. Hugelshofer, T. Magauer, Angew. Chem. Int. Ed. 2014, 53, 11351;
Angew. Chem. 2014, 126, 11533; i) aquayamycin: T. Matsumoto, H. Yama-
guchi, M. Tanabe, Y. Yasui, K. Suzuki, Tetrahedron Lett. 2000, 41, 8393; j)
hibarimicinone: K. Tatsuta, S. Hosokawa, Chem. Rec. 2014, 14, 28 (review).
For the reactivity of 3-substituted phthalides with various Michael ac-
ceptors, review, see: a) R. Karmakar, P. Pahari, D. Mal, Chem. Rev. 2014,
114, 6213; for selected articles: b) phosphonylphthalide: M. Watanabe, H.
Morimoto, K. Nogami, S. Ijichi, S. Furukawa, Chem. Pharm. Bull. 1993, 41,
968; c) cyano-, sulfonyl-, and ester-phthalides: Y. S. Rho, J. H. Yoo, B. N.
Baek, C. J. Kim, I. H. Cho, Bull. Korean Chem. Soc. 1996, 17, 946; d) benzo-
triazolylphthalide: A. R. Katritzky, G. Zhang, L. Xie, Synth. Commun. 1997,
27, 3951; e) ester phthalide: J. Luo, C. Jiang, H. Wang, L.-W. Xu, Y. Lu,
Tetrahedron Lett. 2013, 54, 5261; f) F. Zhong, J. Luo, G.-Y. Chen, X. Dou,
Y. Lu, J. Am. Chem. Soc. 2012, 134, 10222.
Scheme 6. One-pot reaction.
Conclusion
In conclusion, the [4+2] annulation of phthalides with conju-
gated nitroalkenes typically provides the expected substituted
naphthoquinones in moderate yields. However, the presence
of additional nucleophilic sites in the nitroalkene changes the
reaction course to a [4+4] annulation, the first observation in
Hauser–Kraus chemistry, and delivers functionalized fused and
spiro heterocycles in good to excellent yields after extensive
rearrangement. Studies aimed at gaining greater insight into
the mechanism of the observed multicascade processes and at
expanding the scope and applications of the products are cur-
[10]
CCDC 1455012 (for 6b) and 1455013 (for 7a) contain the
[11]
[12]
[13]
W. Brade, A. Vasella, Helv. Chim. Acta 1989, 72, 1649.
M. P. Gore, S. J. Gould, D. D. Weller, J. Org. Chem. 1992, 57, 2774.
J. Luo, H. Wang, F. Zhong, J. Kwiatkowski, L.-W. Xu, Y. Lu, Chem. Commun.
2013, 49, 5775.
[14]
For recent reviews on nitroalkenes, see: a) C. Najera, J. M. Sansano, Curr.
Top. Med. Chem. 2014, 14, 1271; b) K. Kaur, I. N. N. Namboothiri, Chimia
2012, 66, 913; c) R. Somanathan, D. Chavez, F. A. Servin, J. A. Romero, A.
Navarrete, M. Parra-Hake, G. Aguirre, C. A. de Parrodi, J. Gonzalez, Curr.
Org. Chem. 2012, 16, 2440; d) O. M. Berner, L. Tedeschi, D. Enders, Eur. J.
Org. Chem. 2002, 1877; e) A. Z. Halimehjani, I. N. N. Namboothiri, S. E.
Hooshmand, RSC Adv. 2014, 4, 31261; f) A. Z. Halimehjani, I. N. N. Nam-
boothiri, S. E. Hooshmand, RSC Adv. 2014, 4, 48022; g) A. Z. Halimehjani,
I. N. N. Namboothiri, S. E. Hooshmand, RSC Adv. 2014, 4, 51794; h) R.
Ballini, S. Gabrielli, A. Palmieri, Curr. Org. Chem. 2010, 14, 65; for recent
articles on 2-hydroxynitrostyrenes, see: i) A. B. Xia, C. Wu, T. Wang, Y.-P.
Zhang, X.-H. Du, A.-G. Zhong, D.-Q. Xu, Z.-Y. Xu, Adv. Synth. Catal. 2014,
356, 1753; j) V. T. Perez, A. L. F. de Arriba, L. M. Monleon, L. Simon, O. H.
Rubio, F. Sanz, J. R. Moran, Eur. J. Org. Chem. 2014, 324; k) B.-C. Hong, P.
Kotame, J.-H. Liao, Org. Biomol. Chem. 2011, 9, 382; for selected articles
on nitroalkenes in the synthesis of heterocycles from our group, see: l)
arenodihydrofurans and triazoles: V. Mane, J. Pandey, N. Ayyagari, C. Dey,
R. Kale, I. N. N. Namboothiri, Org. Biomol. Chem. 2016, 14, 2427; m) imid-
azoles: E. Gopi, T. Kumar, R. F. S. Menna-Barreto, W. O. Valenca, E. N.
da Silva Junior, I. N. N. Namboothiri, Org. Biomol. Chem. 2015, 13, 9862;
Supporting Information (see footnote on the first page of this
article): Complete experimental procedures, characterization data,
and copies of the NMR spectra for all new compounds.
Acknowledgments
I. N. N. N. thanks Science and Engineering Research Board
(SERB), Department of Science and Technology (DST), India, for
financial assistance. T. K. thanks the Council of Scientific and
Industrial Research (CSIR), India, and N. S. thanks the University
Grants Commission (UGC), India, for a senior research fellow-
ship.
Keywords: Annulation · Fused-ring systems · Spiro
compounds · Oxygen heterocycles · Nitroalkenes
Eur. J. Org. Chem. 0000, 0–0
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim