4938
C. Zhu, M. Yamane / Tetrahedron 67 (2011) 4933e4938
Indian J. Chem. 2006, 45B, 1704e1709; (j) Choudhari, B. P.; Mulwad, V. V. Indian J.
CDCl3) for mixture:
d
¼14.6, 20.9, 123.3, 124.7, 125.4, 126.4, 128.3,
Chem. 2006, 45B, 309e313; (k) Vikas, S.; Darbhamulla, S. Afr. Health Sci. 2009, 9,
275e278; (l) Shaban, M. A.; Al Badry, O. M.; Kamala, A. M.; el Wahap Abd El-
Gawad, M. A. J. Chem. Res. 2008, 715e718; (m) Vargas, F.; Zoltan, T.; Rivas, C.;
128.46, 128.52, 128.8, 129.1, 129.2, 129.6, 129.7, 130.2, 130.4, 130.8,
130.9, 133.5, 134.3, 138.0, 148.5, 149.3, 151.5, 155.3. ESI-HRMS:
found: m/z 221.1081. Calcd for C15H13N2: (MþH)þ 221.1079.
ꢀ
ꢀ
ꢀ
Ramirez, A.; Cordero, T.; Díaz, Y.; Izzo, C.; Cardenas, Y. M.; Lopez, V.; Gomez, L.;
Ortega, J.; Fuentes, A. J. Photochem. Photobiol., B 2008, 92, 83e90; (n) Ryu, C.-K.;
Lee, J. Y. Bioorg. Med. Chem. Lett. 2006, 16, 1850e1853; (o) Ramalingam, P.;
Ganapaty, S.; Babu Rao, C.; Ravi, T. K. Indian J. Heterocycl. Chem. 2006, 15,
359e362 Cinnoline used as anti-inflammatory reagents: Lunniss, C.; Eldred, C.;
Aston, N.; Craven, A.; Gohil, K.; Judkins, B.; Keeling, S.; Ranshaw, L.; Robinson,
E.; Shipley, T.; Trivedi, N. Bioorg. Med. Chem. Lett. 2010, 20, 137e140.
4.2.19. 3-Butyl-4-phenylcinnoline (3q). Rf¼0.24 (ethyl acetate/hex-
ane 1:3); yield: 27% (17.7 mg, 0.07 mmol); pale yellow viscous oil.
The regiostructure of 3q was confirmed by NOESY analysis, which
showed no correlation between butyl hydrogen and the hydrogen
on 5-carbon of the cinnoline ring. IR (neat) 3061, 2959, 2930, 2870,
2. Cinnoline and derivertives exhibit luminescent and nonlinear optical proper-
ties: (a) Mitsumori, T.; Bendikov, M.; Sedo, J.; Wudl, F. Chem. Mater. 2003, 15,
1634, 1614 cmꢁ1
;
1H NMR (400 MHz, CDCl3)
d
¼0.82 (t, J¼7.4 Hz,
ꢀ
3759e3768; (b) Chapoulaud, V. G.; Ple, N.; Turck, A.; Queguiner, G. Tetrahedron
2000, 56, 5499e5507; (c) Busch, A.; Turck, A.; Nowicka, K.; Barasella, A.; An-
draud, C.; Ple, N. Heterocycles 2007, 71, 1723e1741.
3H), 1.24e1.32 (m, 2H), 1.70e1.76 (m, 2H), 3.00e3.04 (m, 2H),
7.29e7.31 (m, 2H), 7.44 (d, J¼8.4 Hz, 1H), 7.51e7.60 (m, 4H),
7.72e7.76 (m,1H), 8.54 (d, J¼8.4 Hz,1H); 13C NMR (100 MHz, CDCl3)
ꢀ
3. For the review about cinnoline synthesis, see: (a) Haider, N.; Holzer, W. Sci.
Synth. 2004, 16, 251e313; (b) Vinogradova, O. V.; Balova, I. A. Chem. Heterocycl.
Compd. 2008, 44, 501e522 For some recent examples, see: (c) Alajarin, M.;
Bonillo, B.; Marin-Luna, M.; Vidal, A.; Orenes, R.-A. J. Org. Chem. 2009, 74,
3558e3561; (d) Jiang, B.; Hao, W.-J.; Zhang, J.-P.; Tu, S.-J.; Shi, F. Org. Biomol.
Chem. 2009, 7, 1
d
¼13.8, 22.5, 32.5, 33.4, 125.0, 125.7, 128.4, 128.6, 129.1, 129.4, 129.8,
130.7, 133.2, 134.3, 149.0, 155.3. ESI-HRMS: found: m/z 263.1541.
Calcd for C18H19N2: (MþH)þ 263.1548.
171e1175; (e) Hasegawa, K.; Kimura, N.; Arai, S.; Nishida, A. J.
Org. Chem. 2008, 73, 6363e6368; (f) Vinogradova, O. V.; Sorokoumov, V. N.;
Vasilevskii, S. F.; Balovaa, I. A. Russ. Chem. Bull. 2008, 57, 1725e1733; (g) Ichi-
kawa, J.; Wada, Y.; Kuroki, H.; Miharab, J.; Nadanob, R. Org. Biomol. Chem. 2007,
5, 3956e3962; (h) Vinogradova, O. V.; Sorokoumov, V. N.; Vasilevsky, S. F.;
Balova, I. A. Tetrahedron Lett. 2007, 48, 4907e4909.
4.2.20. 4-Butyl-3-phenylcinnoline (3q0). Rf¼0.33 (ethyl acetate/hex-
ane 1:3); yield: 53% (34.8 mg, 0.13 mmol); pale yellow solid. The
regiostructure of 3q0 was confirmed by NOESY analysis, which
showed a correlation between butyl hydrogen and the hydrogen on
5-carbon of the cinnoline ring. Mp 68e69 ꢀC (ethyl acetate); IR
(neat) 3061, 2959, 2930, 2870, 1638, 1614 cmꢁ1; 1H NMR (400 MHz,
4. Cinnoline synthesis from arenediazonium salts: (a) Vasilevsky, S. F.; Tretyakov,
E. V.; Verkruijsse, H. D. Synth. Commun. 1994, 24, 1733e1736; (b) Vasilevsky, S.
F.; Tretyakov, E. V. Liebigs Ann. Chem. 1995, 775e779; (c) Alford, E. J.; Irving, H.;
Marsh, H. S.; Schofield, K. J. Chem. Soc. 1952, 2991e2993; (d) Nunn, A. J.;
Schofield, K. J. Chem. Soc. 1953, 3700e3706.
CDCl3)
d
¼0.85 (t, J¼7.4 Hz, 3H), 1.32e1.38 (m, 2H), 1.60e1.66 (m,
5. Cinnoline synthesis from arylhydrazones: (a) Pfannstiel, K.; Janecke, J. Ber.
Dtsch. Chem. Ges. 1942, 75, 1096e1107; (b) Baumgarten, H. E.; Anderson, C. H. J.
Am. Chem. Soc. 1958, 80, 1981e1984; (c) Kanner, C. B.; Pandit, U. K. Tetrahedron
1981, 37, 3513e3518; (d) Kiselyov, A. S. Tetrahedron Lett. 1995, 36, 1383e1386;
(e) Domingues, C. Tetrahedron Lett. 1999, 40, 5111e5114; (h) Shvartsberg, M. S.;
Ivanchikova, I. D. Tetrahedron Lett. 2000, 41, 771e773; (i) Al-Awadi, N. A.; El-
nagdi, M. H.; Ibrahim, Y. A.; Kaul, K.; Kumar, A. Tetrahedron 2001, 57,
1609e1614; (j) Gomaa, M. A.-M. Tetrahedron Lett. 2003, 44, 3493e3496.
2H), 3.05e3.09 (m, 2H), 7.49e7.56 (m, 3H), 7.60e7.63 (m, 2H),
7.77e7.84 (m, 2H), 8.09 (dd, J¼7.8,1.8 Hz,1H), 8.58 (dd, J¼7.8,1.8 Hz,
1H); 13C NMR (100 MHz, CDCl3)
d
¼13.6, 22.9, 27.5, 33.0,123.4,125.7,
128.3,129.6,129.8,130.7,130.8,133.2,138.4,149.2,155.5. ESI-HRMS:
found: m/z 263.1539. Calcd for C18H19N2: (MþH)þ 263.1548.
}
6. Cinnoline synthesis from arylhydrazines: (a) Neber, P. W.; Knoller, G.; Herbst,
Acknowledgements
K.; Trissler, H. A. Liebigs Ann. Chem. 1929, 471, 113e145; (b) Alford, E. J.; Scho-
field, K. J. Chem. Soc. 1952, 2081e2088.
7. Cinnoline synthesis from nitrile: Chen, D.; Yang, C.; Xie, Y.; Ding, J. Heterocycles
2009, 77, 273e277.
8. For review about triazene, see: Kimball, D. B.; Haley, M. M. Angew. Chem., Int. Ed.
We thank Nanyang Technological University for the generous
financial support.
2002, 41, 3338e3351 For cinnoline synthesis from triazenes, see: (a) Brase, S.;
€
Dahmen, S.; Heuts, J. Tetrahedron Lett. 1999, 40, 6201e6203; (b) Brase, S.; Gil, C.;
Supplementary data
Knepper, K. Bioorg. Med. Chem. 2002, 10, 2415e2437; (c) Kimball, D. B.; Hayes,
A. G.; Haley, M. M. Org. Lett. 2000, 2, 3825e3827; (d) Kimball, D. B.; Weakley, T.
J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 13463e13473; (e)
Kimball, D. B.; Weakley, T. J. R.; Haley, M. M. J. Org. Chem. 2002, 67, 6395e6405;
(f) Kimball, D. B.; Weakley, T. J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc.
2002, 124, 1572e1573; (g) Vinogradovaa, O. V.; Sorokoumova, V. N.; Balova, I. A.
Tetrahedron Lett. 2009, 50, 6358e6360.
9. For review about palladium-catalyzed annulation with alkynes, see: (a) Zeni,
G.; Larock, R. C. Chem. Rev. 2006, 106, 4644e4680; (b) Zeni, G.; Larock, R. C.
Chem. Rev. 2004, 104, 2285e2309 For some recent examples, see: (c) Tsuka-
moto, H.; Kondo, Y. Org. Lett. 2007, 9, 4227e4230; (d) Heller, S. T.; Natarajan, S.
R. Org. Lett. 2007, 9, 4947e4950; (e) Yang, M.; Zhang, X.; Lu, X. Org. Lett. 2007, 9,
5131e5133; (f) Chernyak, N.; Tilly, D.; Li, Z.; Gevorgyan, V. Chem. Commun. 2010,
150e152.
Supplementary data associated with this article include 1H
and 13C NMR of 1i and 3aeq. Supplementary data associated
with this article can be found in online version at doi:10.1016/
the most important compounds described in this article.
References and notes
1. For review, see: Lewgowd, W.; Stanczak, A. Arch. Pharmacol. 2007, 340, 65e80.
Cinnoline used as anticancer reagent: (a) Hennequin, L. F.; Thomas, A. P.;
Johnstone, C.; Stokes, E. S. E.; Ple, P. A.; Lohmann, J.-J. M.; Ogilvie, D. J.; Dukes,
ꢀ
10. For palladium-mediated 6-endo or 5-exo cyclization, see: (a) Roesch, K. R.;
Larock, R. C. J. Org. Chˇ em. 2001, 66, 412e420; (b) Lemaire-Audoire, S.; Savignac,
M.; Wedge, S. R.; Curwen, J. O.; Kendrew, J.; Lambert-van der Brempt, C. J. Med.
Chem. 1999, 42, 5369e5389; (b) Yu, Y.; Singh, S. K.; Liu, A.; Li, T.-K.; Liu, L. F.; La
Voie, E. J. Bioorg. Med. Chem. 2003, 11, 1475e1491; (c) Ruchelman, A. L.; Sing, S.
K.; Ray, A.; Wu, X.; Yang, J.-M.; Zhu, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med.
Chem. 2004, 12, 795e806; (d) Sato, Y.; Suzuki, Y.; Yamamoto, K.; Kuroiwa, S.;
Maruyama, S. JP2005/10494, WO 2005121105, 2005; (e) Saxena, V.; Maiti, S. K.;
Kumar, N.; Sharma, A. K. Indian J. Anim. Sci. 2008, 78, 1250e1253 Cinnoline used
as fungicidal and bactericidal agents: (f) Barraja, P.; Diana, P.; Lauria, A.; Pas-
sananti, A.; Almerico, A. M.; Minnei, C.; Longu, S.; Congiu, D.; Musiu, C.; LaColla,
P. Bioorg. Med. Chem. 1999, 7, 1591e1596; (g) Gavini, E.; Juliano, C.; Mulu, A.;
Pirisino, G.; Murineddu, G.; Pinna, G. A. Arch. Pharmacol. 2000, 333, 341e346;
(h) Pattan, S. R.; Ali, M. S.; Pattan, J. S.; Redd, V. V. K. Indian J. Heterocycl. Chem.
2004, 14, 157e158; (i) Narayana, B.; Ra, K. K.; Ashalatha, K. K.; Kumari, N. S.
M.; Dupuis, C.; Genet, J. Tetrahedron Lett. 1996, 37, 2003e2006; (c) Rigby, J. H.;
Hughes, R. C.; Heeg, M. J. J. Am. Chem. Soc. 1995, 117, 7834e7835; (d) Dankwart,
J. W.; Flippin, L. A. J. Org. Chem. 1995, 60, 2312e2313; (e) Trost, B. M.; Dumas, J.
Tetrahedron Lett. 1993, 34, 19e22.
11. For palladium-catalyzed reactions involving the insertion of
a nitro-
~
genenitrogen double bond, see: (a) Muniz, K.; Nieger, M. Angew. Chem., Int. Ed.
~
2006, 45, 2305e2308; (b) Muniz, K.; Iglesias, A. Angew. Chem., Int. Ed. 2007, 46,
6350e6353.
12. For 2-substituted cinnolinium salts formation, see: Wu, G.; Rhelngold, A. L.;
Heck, R. F. Organometallics 1987, 6, 2386e2391.
13. Allen, C. F. H.; Vanallan, J. A. J. Am. Chem. Soc. 1951, 73, 5850e5856.
14. Lowrie, H. S. J. Med. Chem. 1966, 9, 664e669.