988
T. W. Jaskolla and M. Karas: The Unified MALDI Analyte Protonation Mechanism
41. Zhang, X., Cassady, C.J.: Apparent gas-phase acidities of multiply
protonated peptide ions: ubiquitin, insulin B, and renin substrate. J. Am.
Soc. Mass Spectrom. 7, 1211–1218 (1996)
42. Harrison, A.G.: The gas-phase basicities and proton affinities of amino
acids and peptides. Mass Spectrom. Rev. 16, 201–217 (1997)
43. Bleiholder, C., Suhai, S., Paizs, B.: Revising the proton affinity scale of
the naturally occurring α-amino acids. J. Am. Soc. Mass Spectrom. 17,
1275–1281 (2006)
MALDI-TOF mass spectrometry. J. Proteome Res. 8, 3588–3597
(2009)
64. Papasotiriou, D.G., Jaskolla, T.W., Markoutsa, S., Baeumlisberger, D.,
Karas, M., Mexer, B.: Peptide mass fingerprinting after less specific in-
gel proteolysis using MALDI-LTQ-Orbitrap and 4-Chloro-α-Cyanocin-
namic acid. J. Proteome Res. 9, 2619–2629 (2010)
65. Leszyk, J.D.: Evaluation of the New MALDI Matrix 4-Chloro-α-
Cyanocinnamic Acid. J. Biomol. Technol. 21, 81–91 (2010)
66. Schnier, P.D., Gross, D.S., Williams, E.R.: Electrostatic forces and
dielectric Polarizability of multiply protonated gas-phase Cytochrome c
ions probed by ion/molecule chemistry. J. Am. Chem. Soc. 117, 6747–
6757 (1995)
67. Schnier, P.D., Price, W.D., Williams, E.R.: Modeling the maximum
charge state of Arginine-containing Peptide ions formed by Electrospray
Ionization. J. Am. Soc. Mass Spectrom. 7, 972–976 (1996)
68. Gruebele, M., Sabelko, J., Ballew, R., Ervin, J.: Laser temperature jump
induced protein folding. Acc. Chem. Res. 31, 699–707 (1998)
69. Gilmanshin, R., Williams, S., Callender, R.H., Woodruff, W.H., Dyer,
R.B.: Fast events in protein folding: relaxation dynamics of secondary
and tertiary structure in native Apomyoglobin. Proc. Natl. Acad. Sci. U.
S. A. 94, 3709–3713 (1997)
44. Knochenmuss, R., Stortelder, A., Breuker, K., Zenobi, R.: Secondary-
ion molecule reactions in matrix-assisted laser desorption/ionization. J.
Mass Spectrom. 35, 1237–1245 (2000)
45. Bourcier, S., Hoppilliard, Y.: B3LYP DFT Molecular orbital approach,
an efficient method to evaluate the thermochemical properties of
MALDI matrices. Int. J. Mass Spectrom. 217, 231–244 (2002)
46. Ohanessian, G.: Interaction of MALDI matrix molecules with Na+ in
the gas phase. Int. J. Mass Spectrom. 219, 577–592 (2002)
47. Yassin, F.H., Marynick, D.S.: Computational estimates of the gas-phase
acidities of Dihydroxybenzoic acid radical cations and their correspond-
ing neutral species. J. Mol. Struc. Theochem. 629, 223–235 (2003)
48. Ueno-Noto, K., Marynick, D.S.: A comparative computational study of
matrix–peptide interactions in MALDI mass spectrometry: the inter-
action of four tripeptides with the MALDI Matrices 2,5-Dihydroxy-
benzoic Acid, α-Cyano-4-Hydroxy-Cinnamic Acid, and 3,5-
Dihydroxybenzoic Acid. Mol. Phys. 107, 777–788 (2009)
49. Hillenkamp, F., Wäfler, E., Jecklin, M.C., Zenobi, R.: Positive and
negative ion yield in matrix-assisted laser desorption/ionization revis-
ited. Int. J. Mass Spectrom. 285, 114–119 (2009)
70. Dyer, R.B., Gai, F., Woodruff, W.H., Gilmanshin, R., Callender, R.H.:
Infrared studies of fast events in protein folding. Acc. Chem. Res. 31,
709–716 (1998)
71. Freddolino, P.L., Liu, F., Gruebele, M., Schulten, K.: Ten-microsecond
molecular dynamics simulation of a fast-folding WW domain. Biophys.
J. 94, L75–L77 (2008)
50. Krüger, R., Karas, M.: Ion formation in MALDI: the cluster ionization
mechanism. Chem. Rev. 103, 427–439 (2003)
51. Knochenmuss, R., Zenobi, R.: MALDI Ionization: the role of in-plume
processes. Chem. Rev. 130, 441–452 (2003)
72. Hagen, S.J., Hofrichter, J., Szabo, A., Eaton, W.A.: Diffusion-limited
contact formation in unfolded cytochrome c: estimating the maximum
rate of protein folding. Proc. Natl. Acad. Sci. U. S. A. 93, 11615–11617
(1996)
52. Krüger, R., Pfenninger, A., Fournier, I., Glückmann, M., Karas, M.:
Analyte incorporation and ionization in matrix-assisted laser desorption/
ionization visualized by pH indicator molecule probes. Anal. Chem. 73,
5812–5821 (2001)
53. Friess, S.D., Zenobi, R.: Protein structure information from mass
spectrometry? selective titration of arginine residues by sulfonates. J.
Am. Soc. Mass Spectrom. 12, 810–818 (2001)
54. Krüger, R., Karas, M.: Formation and fate of ion pairs during MALDI
analysis: anion adduct generation as an indicative tool to determine
ionization processes. J. Am. Soc. Mass Spectrom. 13, 1218–1226
(2002)
55. McCombie, G., Knochenmuss, R.: Enhanced MALDI ionization
efficiency at the metal–matrix interface: practical and mechanistic
consequences of sample thickness and preparation method. J. Am. Soc.
Mass Spectrom. 17, 737–745 (2006)
56. Knochenmuss, R., McCombie, G., Faderl, M.: Ion yields of thin
MALDI samples: dependence on matrix and metal substrate and
implications for models. J. Phys. Chem. A 110, 12728–12733 (2006)
57. Knochenmuss, R., Dubois, F., Dale, M.J., Zenobi, R.: The matrix
suppression effect and ionization mechanisms in matrix-assisted laser
desorption/ionization. Rapid Commun. Mass Spectrom. 10, 871–877
(1996)
58. Beavis, R.C., Chaudhary, T., Chait, B.T.: α-Cyano-4-Hydroxycinnamic
acid as a matrix for matrix-assisted laser desorption mass spectrometry.
Org. Mass Spectrom. 27, 156–158 (1992)
59. Neises, B., Steglich, W.: Simple method for the Esterification of
carboxylic acids. Angew. Chem. Int. Ed Engl. 17, 522–524 (1978)
60. Jaskolla, T.W., Fuchs, B., Karas, M., Schiller, J.: The New Matrix 4-
Chloro-α-Cyanocinnamic Acid Allows the detection of Phosphatidyle-
thanolamine Chloramines by MALDI-TOF mass spectrometry. J. Am.
Soc. Mass Spectrom. 20, 867–874 (2009)
73. Beeson, M.D., Murray, K.K., Russell, D.H.: Aeorosol matrix-assisted
laser desorption ionization: effects of analyte concentration and matrix-
to-analyte ratio. Anal. Chem. 67, 1981–1986 (1995)
74. Krause, E., Wenschuh, H., Jungblut, P.R.: The dominance of arginine
containing peptides in MALDI-Derived Tryptic mass fingerprints of
proteins. Anal. Chem. 71, 4160–4165 (1999)
75. Valero, M.-L.V., Giralt, E., Andreu, D.: An investigation of residue-
specific contributions to peptide desorption in MALDI-TOF mass
spectrometry. Lett. Pept. Sci. 6, 109–115 (1999)
76. Baumgart, S., Lindner, Y., Kühne, R., Oberemm, A., Wenschuh, H.,
Krause, E.: The contributions of specific amino acid side chains to signal
intensities of peptides in matrix-assisted laser desorption/ionization mass
spectrometry. Rapid Commun. Mass Spectrom. 18, 863–868 (2004)
77. Campbell, S., Rodgers, M.T., Marzluff, E.M., Beauchamp, J.L.:
Structural and energetic constraints on gas phase hydrogen/deuterium
exchange reactions of protonated peptides with D2O, CD3OD,
CD3CO2D, and ND3. J. Am. Chem. Soc. 116, 9765–9766 (1994)
78. Wyttenbach, T., Bowers, M.T.: Gas phase conformations of biological
molecules: the hydrogen/deuterium exchange mechanism. J. Am. Soc.
Mass Spectrom. 10, 9–14 (1999)
79. He, F., Marshall, A.G.: Assignment of gas-phase dipeptide amide
hydrogen exchange rate constants by site-specific substitution: GlyGly.
J. Phys. Chem. B 105, 2244–2249 (2001)
80. Campbell, S., Rodgers, M.T., Marzluff, E.M., Beauchamp, J.L.:
Deuterium exchange reactions as a probe of biomolecule structure.
fundamental studies of gas phase H/D exchange reactions of protonated
glycine oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am.
Chem. Soc. 117, 12840–12854 (1995)
81. Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Mobile and
localized protons: a framework for understanding peptide dissociation.
J. Mass Spectrom. 35, 1399–1406 (2000)
61. Finholt, P., Higuchi, T.: Rate studies on the hydrolysis of Niacinamide.
J. Pharm. Sci. 51, 655–661 (1962)
63. Jaskolla, T.W., Papasotiriou, D.G., Karas, M.: Comparison between the
matrices α-Cyano-4-Hydroxycinnamic Acid and 4-Chloro-α-Cyanocin-
namic Acid for Trypsin, Chymotrypsin, and Pepsin Digestions by
82. Wysocki, V. H.; Cheng, G.; Zhang, Q.; Hermann, K. A.; Beardsley, R.
L.; Hilderbrand, A. E. Peptide Fragmentation Overview. In Principles of
Mass Spectrometry Applied to Biomolecules; Laskin, J.; Lifshitz, C., Eds.;
John Wiley and Sons: Hoboken, NJ, 2006; Chap VIII, pp. 279–300.
83. Boyd, R., Somogyi, Á.: The mobile proton hypothesis in fragmentation
of protonated peptides: a perspective. J. Am. Soc. Mass Spectrom. 21,
1275–1278 (2010)