4 (a) P. P. Power, Chem. Rev., 1999, 99, 3463–3503; (b) P. P. Power,
Chem. Commun., 2003, 2091–2101; (c) S. P. Green, C. Jones,
P. C. Junk, K.-A. Lippert and A. Stasch, Chem. Commun., 2006,
3978–3980; (d) P. P. Power, Organometallics, 2007, 26, 4362–4372;
(e) Y. Wang and G. H. Robinson, Chem. Commun., 2009,
5201–5213; (f) R. C. Fischer and P. P. Power, Chem. Rev., 2010,
110, 3877–3923; (g) Y. Peng, R. C. Fischer, W. A. Merrill,
J. Fischer, L. Pu, B. D. Ellis, J. C. Fettinger, R. H. Herber and
P. P. Power, Chem. Sci., 2010, 1, 461–468.
5 S. S. Sen, A. Jana, H. W. Roesky and C. Schulzke, Angew. Chem.,
2009, 121, 8688–8690 (Angew. Chem., Int. Ed., 2009, 48,
8536–8538).
Scheme 2 Syntheses of 7.
6 S. Nagendran, S. S. Sen, H. W. Roesky, D. Koley, H. Grubmuller,
¨
A. Pal and R. Herbst-Irmer, Organometallics, 2008, 27,
5459–5463.
7 (a) B. Gehrus, P. B. Hitchcock and M. F. Lappert, Z. Anorg. Allg.
Chem., 2005, 631, 1383–1386; (b) H.-X. Yeong, H.-W. Xi,
K. H. Lim and C.-W. So, Chem.–Eur. J., 2010, 16, 12956–12961;
(c) W. Wang, S. Inoue, S. Yao and M. Driess, J. Am. Chem. Soc.,
2010, 132, 15890–15892.
8 (a) F. E. Hahn, A. V. Zabula, T. Pape and A. Hepp, Eur. J. Inorg.
Chem., 2007, 2405–2408; (b) S. Yao, X. Zhang, Y. Xiong,
H. Schwarz and M. Driess, Organometallics, 2010, 29,
5353–5357; (c) S. S. Sen, D. Kratzert, D. Stern, H. W. Roesky
and D. Stalke, Inorg. Chem., 2010, 49, 5786–5788.
9 W. Wang, S. Inoue, S. Yao and M. Driess, Chem. Commun., 2009,
2661–2663.
emerge downfield (d ꢁ0.50 ppm and d 1.82 ppm), when
compared with those of 6 (d ꢁ0.99 and d 1.58 ppm). In the
13C NMR spectrum of 7 Al-Me and g-C atom of the
b-diketiminato part appear at d ꢁ10.8 and 99.8 ppm
respectively. The 29Si NMR spectrum shows a sharp singlet
(d 41.16 ppm) which corresponds to the three-coordinate
silicon atom and also matches excellently with that of 4. The
27Al NMR spectrum of 7 is silent due to the quadrupole
moment of the aluminium atom. Despite several attempts we
are not able to obtain single crystals of 7.
In summary, complex 4 containing Si(II) and Ge(II) has been
prepared by the reaction of 1 with 3. Furthermore, a bis(ger-
mylene) 5 is also obtained by following the same synthetic
protocol. The synthetic strategy was also extended to prepare
complex 7 containing a Si(II) and an Al(III) center for the first
time. This synthetic approach opens an access to Si(II) com-
pounds in combination with other metals excluding the oxidative
addition reaction at the Si(II) center.
10 S. S. Sen, H. W. Roesky, D. Stern, J. Henn and D. Stalke, J. Am.
Chem. Soc., 2010, 132, 1123–1126.
11 M. Driess, S. Yao, M. Brym and C. van Wullen, Angew. Chem.,
¨
2006, 118, 4455–4458 (Angew. Chem., Int. Ed., 2006, 45,
4349–4352).
12 A. Jana, I. Objartel, H. W. Roesky and D. Stalke, Inorg. Chem.,
2009, 48, 798–800.
13 (a) S. S. Sen, G. Tavcar, H. W. Roesky, D. Kratzert, J. Hey and
D. Stalke, Organometallics, 2010, 29, 2343–2347; (b) M. Kaftory,
M. Kapon and M. Botoshansky, The Chemistry of Organic
Silicon Compounds, ed. Z. Rappoport and Y. Apeloig, Wiley,
Chichester, UK, 1998, vol. 2, ch. 5; (c) S. S. Sen, S. Khan,
D. Kratzert, H. W. Roesky and D. Stalke, Eur. J. Inorg. Chem.,
2011, 1370–1373; (d) S. Khan, S. S. Sen, D. Kratzert, G. Tavcar,
H. W. Roesky and D. Stalke, Chem.–Eur. J., 2011, 17,
4283–4290.
14 (a) M. Veith, S. Becker and V. Huch, Angew. Chem., 1989, 101,
1287–1288 (Angew. Chem., Int. Ed. Engl., 1989, 28, 1237–1238);
(b) M. Veith, S. Becker and V. Huch, Angew. Chem., 1990, 102,
186–188 (Angew. Chem., Int. Ed. Engl., 1990, 29, 216–218);
(c) M. Veith, A. Detemple and V. Huch, Chem. Ber., 1991, 124,
1135–1141; (d) J. Barrau, G. Rima and T. El Amraoui,
J. Organomet. Chem., 1998, 570, 163–174.
15 (a) Y. Ding, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt
and P. P. Power, Organometallics, 2001, 20, 1190–1194;
(b) D. Matioszek, N. Katir, N. Saffon and A. Castel, Organo-
metallics, 2010, 29, 3039–3046.
16 Y. Ding, Q. Ma, H. W. Roesky, R. Herbst-Irmer, I. Uson,
´
M. Noltemeyer and H.-G. Schmidt, Organometallics, 2002, 21,
5216–5220.
This work was supported by the Deutsche Forschungsge-
meinschaft. D. S. thanks the DNRF funded Center for Materials
Crystallography (CMC) for support and the Land Niedersachsen
for providing a fellowship in the Catalysis for Sustainable
Synthesis (CaSuS) PhD program.
Notes and references
1 M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov,
H. P. Verne, A. Haaland, M. Wagner and N. Metzler, J. Am.
Chem. Soc., 1994, 116, 2691–2692.
2 M. Veith and M. Grosser, Z. Naturforsch., 1982, 37b, 1375.
3 For recent reviews in silylenes see: (a) M. Haaf, T. Schmedake and
R. West, Acc. Chem. Res., 2000, 33, 704–714; (b) N. J. Hill and
R. West, J. Organomet. Chem., 2004, 689, 4165–4183;
(c) H. Ottosson and P. G. Steel, Chem.–Eur. J., 2006, 12,
1576–1585; (d) M. Kira, Chem. Commun., 2010, 46, 2893–2903;
(e) M. Asay, C. Jones and M. Driess, Chem. Rev., 2011, 111,
354–396; (f) S. Yao, Y. Xiong and M. Driess, Organometallics,
2011, 30, 1748–1767; For reviews in germylenes see: (g) M. Veith,
Angew. Chem., 1987, 99, 1–14 (Angew. Chem., Int. Ed. Engl., 1987,
26, 1–14); (h) W. P. Neumann, Chem. Rev., 1991, 91, 311–334;
(i) H. V. R. Dias, Z. Wang and W. Jin, Coord. Chem. Rev., 1998,
17 C.-W. So, H. W. Roesky, P. M. Gurubasavaraj, R. B. Oswald,
M. T. Gamer, P. G. Jones and S. Blaurock, J. Am. Chem. Soc.,
2007, 129, 12049–12054.
176, 67–86; (j) O. Kuhl, Coord. Chem. Rev., 2004, 248, 411–427;
¨
18 (a) S. P. Sarish, H. W. Roesky, M. John, A. Ringe and J. Magull,
Chem. Commun., 2009, 2390–2392; (b) S. P. Sarish,
B. Nekoueishahraki, A. Jana, H. W. Roesky, T. Schulz and
D. Stalke, Chem.–Eur. J., 2011, 17, 890–894.
(k) I. Saur, S. G. Alonso and J. Barrau, Appl. Organomet. Chem.,
2005, 19, 414–428; (l) W.-P. Leung, K.-W. Kan and K.-H. Chong,
Coord. Chem. Rev., 2007, 251, 2253–2265; (m) S. Nagendran and
H. W. Roesky, Organometallics, 2008, 27, 457–492.
c
7208 Chem. Commun., 2011, 47, 7206–7208
This journal is The Royal Society of Chemistry 2011