Organometallics
ARTICLE
’ ACKNOWLEDGMENT
(14) Ikeda, Y.; Yamaguchi, T.; Kanao, K.; Kimura, K.; Kamimura, S.;
Mutoh, Y.; Tanabe, Y.; Ishii, Y. J. Am. Chem. Soc. 2008, 130,
16856–16857.
(15) Mutoh, Y.; Ikeda, Y.; Kimura, K.; Ishii, Y. Chem. Lett. 2009,
38, 534–535.
We thank the Spanish MICINN (Projects CTQ2010-15390,
V.K.S. sabbatical leave SB2005-0124, CTQ2008-06866-C02-01,
and ORFEO Consolider-Ingenio 2010 CSD2007-00006) and
“Junta de Andalucía” (PAI - FQM188 and Project of Excellence
PAI05 FQM094 - Project of Excellence P08-FQM-03538) for
financial support and for a postdoc contract to E.B. and Johnson
Matthey plc for generous loans of ruthenium trichloride. M.A.O.
acknowledges the Spanish MICINN for an FPU fellowship.
(16) (a) Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledꢀos, A. Organo-
metallics 1997, 16, 3805–3814. (b) Jia, G.; Lau, C. P. Coord. Chem. Rev.
1999, 190ꢀ192, 83–108. (c) Man, M. L.; Zhu, J.; Ng, S. M.; Zhou, Z. Y.;
Yin, C. Q.; Lin, Z. Y.; Lau, C. P. Organometallics 2004, 23, 6214–6220.
(17) Besora, M.; Vyboishchikov, S. F.; Lledꢀos, A.; Maseras, F.;
Carmona, E.; Poveda, M. L. Organometallics 2010, 29, 2040–2045.
(18) de los Ríos, I.; Bustelo, E.; Puerta, M. C.; Valerga, P. Organo-
metallics 2010, 29, 1740–1749.
(19) Jimꢀenez-Tenorio, M.; Puerta, M. C.; Valerga, P.; Moncho, S.;
Ujaque, G.; Lledꢀos, A. Inorg. Chem. 2010, 49, 6035–6057.
(20) Huang, Y.-H.; Gladysz, J. A. J. Chem. Educ. 1988, 65, 298–303.
(21) Gemel, C.; LaPensꢀee, A.; Mauthner, K.; Mereiter, K.; Schmid,
R.; Kirchner, K. Monatsh. Chem. 1997, 128, 1189–1199.
(22) (a) Reger, D. L.; Klaeren, S. A.; Lebioda, L. Organometallics
1988, 7, 189–193. (b) Ciardi, C.; Reginato, G.; Gonsalvi, L.; de los Ríos,
I.; Romerosa, A.; Peruzzini, M. Organometallics 2004, 23, 2020–2026.
(23) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson,
D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1.
(24) Manna, J.; John, K. D.; Hopkins, M. D. Adv. Organomet. Chem.
1995, 38, 79–154.
’ REFERENCES
(1) (a) Selegue, J. P. Coord. Chem. Rev. 2004, 248, 1543–1563.
(b) Bruce, M. I. In Metal Vinylidenes and Allenylidenes in Catalysis;
Bruneau, C., Dixneuf, P. H., Eds.; Wiley-VCH: Weinheim, Germany,
2008; pp 1ꢀ60.
(2) Lynam, J. M. Chem. Eur. J. 2010, 16, 8238–8247.
(3) (a) Trost, B.; McClory, A. Chem. Asian J. 2008, 3, 164–194.
(b) Odedra, A.; Liu, R.-S. In Metal Vinylidenes and Allenylidenes in
Catalysis; Bruneau, C., Dixneuf, P. H., Eds.; Wiley-VCH: Weinheim,
Germany, 2008; pp 193ꢀ214. (c) Bruneau, C.; Dixneuf, P. H. Angew.
Chem., Int. Ed. 2006, 45, 2176–2203. (d) Trost, B.; Frederiksen, M. U.;
Rudd, M. T. Angew. Chem., Int. Ed. 2005, 44, 6630–6666.
(25) Lomprey, J. R.; Selegue, J. P. J. Am. Chem. Soc. 1992,
(4) (a) García-Yebra, C.; Lꢀopez-Mardomingo, C.; Fajardo, M.;
Anti~nolo, A.; Otero, A.; Rodríguez, A.; Vallat, A.; Luca, D.; Mugnier,
Y.; Carbꢀo, J. J.; Lledꢀos, A.; Bo, C. Organometallics 2000, 19, 1749–1765.
(b) Wakatsuki, Y. J. Organomet. Chem. 2004, 4092–4109. (c) De Angelis,
F.; Sgamellotti, A.; Re, N. Dalton Trans. 2004, 3225–3230. (d) De
Angelis, F.; Sgamellotti, A.; Re, N. Organometallics 2007, 26, 5285–5288.
(e) Bassetti, M.; Cadierno, V.; Gimeno, J.; Pasquini, C. Organometallics
2008, 27, 5009–5016.(f) Zhu, J.; Lin, Z. In Metal Vinylidenes and
Allenylidenes in Catalysis; Bruneau, C., Dixneuf, P. H., Eds.; Wiley-
VCH: Weinheim, Germany, 2008; pp 129ꢀ157. (g) Cabeza, J. A.;
Pꢀerez-Carre~no, E. Organometallics 2010, 29, 3973–3978. (h) Grotjahn,
D. B.; Zeng, X.; Cooksy, A. L.; Kassel, W. S.; DiPasquale, A. G.;
Zakharov, L. N.; Rheingold, A. L. Organometallics 2007, 26,
3385–3402. (i) Vastine, B. A.; Hall, M. B. Organometallics 2008, 27,
4325–4333.
114, 5518–5523.
(26) O’Connor, J. M.; Friese, S. J.; Rodgers, B. L.; Rheingold, A. L.;
Zakharov, L. J. Am. Chem. Soc. 2005, 127, 9346–9347.
(27) Older, C. M.; Stryker, J. M. Organometallics 2000, 19, 2661–
2663.
(28) Jeffery, J. C.; Jelliss, P. A.; Psillakis, E.; Rudd, G. E. A.; Stone,
F. G. A. J. Organomet. Chem. 1998, 17–27.
(29) Urtel, K.; Frick, A.; Huttner, G.; Zsolnai, L.; Kircher, P.; Rutsch,
P.; Kaifer, E.; Jacobi, A. Eur. J. Inorg. Chem. 2000, 33–50.
(30) (a) Bruce, M. I. Chem. Rev. 1991, 91, 197–257. (b) Silvestre, J.;
Hoffmann, R. Helv. Chim. Acta 1985, 68. (c) Koga, N.; Yamazaki, H.;
Morokuma, K. J. Am. Chem. Soc. 1994, 116, 8105–8111. (d) Grotjahn,
D. B.; Miranda-Soto, V.; Kragulj, E. J.; Lev, D. A.; Erdogan, G.; Zeng, X.;
Cooksy, A. L. J. Am. Chem. Soc. 2008, 130, 20–21.
(31) Becker, E.; Pavlik, S.; Kirchner, K. Adv. Organomet. Chem. 2008,
(5) Bustelo, E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.;
Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311–3321.
56, 155ꢀ 197 and references therein.
(32) (a) Alkynetovinylideneisomerization of [CpRu(η2-HCtCMe)-
(6) Puerta, M. C.; Valerga, P. Coord. Chem. Rev. 1999, 193ꢀ
(PMe3)2][PF6] (ΔHq = 23.4 kcal molꢀ1, ΔSq = 3.9 cal molꢀ1 ꢀ1):
K
195, 977–1025.
Bullock, R. M. J. Chem. Soc., Chem. Commun. 1989, 165–167. (b)
Vinylidene to alkyne isomerization of [CpMo(dCdCHtBu)(CO)-
(NO)] (ΔHq = 29.0 kcal molꢀ1, ΔSq = 1.8 cal molꢀ1 Kꢀ1): Ipaktschi,
J.; Mohsseni-Ala, J.; Uhlig, S. Eur. J. Inorg. Chem. 2003, 4313–4320. (c)
Release of terminal alkynes from indenylruthenium vinylidene com-
plexes (ΔHq = 24 kcal molꢀ1, ΔSq = ꢀ3 cal molꢀ1 Kꢀ1): ref 4e.
(33) Spangler, C. W. Chem. Rev. 1976, 76, 187ꢀ 217 and references
therein.
(7) Bly, R. S.; Zhong, Z.; Kane, C.; Bly, R. K. Organometallics 1994,
13, 899–905.
(8) (a) Werner, H.; Baum, M.; Schneider, D.; Windm€uller, B.
Organometallics 1994, 13, 1089–1097. (b) Connelly, N. G.; Geiger,
W. E.; Lagunas, M. C.; Metz, B.; Rieger, A. L.; Rieger, P. H.; Shaw, M. J.
J. Am. Chem. Soc. 1995, 117, 12202–12208. (c) Katayama, H.; Onitsuka,
K.; Ozawa, F. Organometallics 1996, 15, 4642–4645. (d) Werner, H.;
Lass, R. W.; Gevert, O.; Wolf, J. Organometallics 1997, 16, 4077–4088.
(e) Jimꢀenez, M. V.; Sola, E.; Lahoz, F. J.; Oro, L. A. Organometallics 2005,
24, 2722–2729. (f) Ilg, K.; Paneque, M.; Poveda, M. L.; Rendꢀon,
N.; Santos, L. L.; Carmona, E.; Mereiter, K. Organometallics 2006,
25, 2230–2236.
(9) (a) Baum, M.; Mahr, N.; Werner, H. Chem. Ber 1994, 127,
1877–1886. (b) Venkatesan, K.; Blacque, O.; Fox, T.; Alfonso, M.;
Schmalle, H. W.; Berke, H. Organometallics 2004, 23, 1183–1186.
(c) Venkatesan, K.; Blacque, O.; Fox, T.; Alfonso, M.; Schmalle,
H. W.; Kheradmandan, S.; Berke, H. Organometallics 2005, 24, 920–932.
(10) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518–519.
(11) Millert, D. C.; Angelici, R. J. Organometallics 1991, 10, 81–89.
(12) King, P. J.; Knox, S. A. R.; Legge, M. S.; Orpen, A. G.;
Wilkinson, J. N.; Hill, E. A. Dalton Trans. 2000, 1547–1548.
(34) Wang, Y.; Agbossou, F.; Dalton, D. M.; Liu, Y.; Arim, A. M.;
Gladysz, J. A. Organometallics 1993, 12, 2699–2713.
(35) Solid-state reactions can be described by equations of the type
F(R) = kt, where the function F(R) depends on the reaction-controlling
mechanism, as well as the size and shape of the reacting particles. This
type of conversion function may be described in terms of the reaction-
rate-controlling AvramiꢀErofeev model, by the general formula R = 1 ꢀ
exp(ꢀktn), where n is empirically determined via a fitting procedure.
The Avrami exponent is indicative of the reaction mechanism and crystal
growth dimensions: (a) Avrami, M. J. Chem. Phys. 1939, 7, 1103–1112.
(b) Avrami, M. J. Chem. Phys. 1940, 8, 212–224. (c) Avrami, M. J. Chem.
Phys. 1941, 9, 177–184.
(36) Haber, J.; Jamroz, K. J. Solid State Chem. 1982, 44, 291–297.
(37) (a) The scaling factor of 0.9536 recommended in ref 37b for the
vibrational frequencies calculated with the employed combination of
exchange-correlation functional and basis set has been applied.
(13) Shaw, M. J.; Bryant, S. W.; Rath, N. Eur. J. Inorg. Chem.
2007, 3943–3946.
4030
dx.doi.org/10.1021/om200273v |Organometallics 2011, 30, 4014–4031