Palladium-Catalyzed Dienylation of Haloalkynes using 2,3-Butadienyl Acetates
of haloalkynes with 2,3-butadienyl acetates. The hal- Acknowledgements
oalkyne 1 underwent the trans-addition[13] pathway in
We thank the National Natural Science Foundation of China
the presence of excess halide to form the alkenyl-pal-
ladium intermediate I, followed by the carbopallada-
tion reaction with 2,3-butadienyl acetate 3 to give an
allyl-palladium intermediate II. Finally, a b-hetero-
(No. 20902084), The Project–sponsored by SRF for ROCS of
SEM, Qianjiang Talents Project of the Science and Technolo-
gy Office in Zhejiang Province (2010R10016) and Zhejiang
Normal University for their financial support.
ACHTUNGTRENNUNGatom elimination furnished the dienylation product
(Z)-4 and regenerated the palladium catalyst
(Scheme 3).
References
To date, there is no precedent report of using al-
lenes as electrophiles to trap intermediates resulting
from halopalladation of acetylenes, probably due to
the oligomerization of allenes in the presence of diva-
lent palladium complexes.[14] The success of this proto-
col, in our opinion, mainly originated from the obser-
vation that haloalkynes exhibit much more reactivity
than terminal alkynes and allenes under the halopal-
ladation reaction conditions (Scheme 1).
In summary, we have developed an efficient and
practical procedure for the synthesis of (1Z)-1,2-
dihalo-3-vinyl-1,3-dienes with perfect control of ste-
reochemistry through Pd-catalyzed dienylation of al-
kynyl halides using 2,3-butadienyl acetates. It em-
[1] a) E.-I. Negishi, Acc. Chem. Res. 1982, 15, 340; b) N.
Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; c) J. P.
Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc.
Chem. Res. 1998, 31, 805; d) X. Lu, Handbook of Orga-
nopalladium Chemistry for Organic Synthesis Vol. 2,
(Ed.: E.-I. Negishi), John Wiley & Sons, Hoboken, NJ,
2002, pp 2267; e) A. de Meijere, F. Diederich, Metal-
Catalyzed Cross-Coupling Reactions, Vol. 1, Wiley-
VCH, Weinheim, Germany, 2004; f) G. C. Fu, Acc.
Chem. Res. 2008, 41, 1555.
[2] For selected intermolecular halopalladation reactions,
see: a) K. Kaneda, F. Kawamoto, Y. Fujiwara, T. Ima-
naka, S. Teranishi, Tetrahedron Lett. 1974, 1067; b) K.
Kaneda, T. Uchiyama, Y. Fujiwara, T. Imanaka, S. Ter-
anishi, J. Org. Chem. 1979, 44, 55; c) A. N. Thadani,
V. H. Rawal, Org. Lett. 2002, 4, 4317; d) A. N. Thadani,
V. H. Rawal, Org. Lett. 2002, 4, 4321; e) S. Ma, B. Wu,
S. Zhao, Org. Lett. 2003, 5, 4429; f) S. Ma, B. Wu, X.
Jiang, J. Org. Chem. 2005, 70, 2588.
[3] For selected intramolecular halopalladation reactions,
see: a) S. Ma, X. Lu, J. Chem. Soc. Chem. Commun.
1990, 733; b) S. Ma, X. Lu, J. Org. Chem. 1991, 56,
5120; c) S. Ma, G. Zhu, X. Lu, J. Org. Chem. 1993, 58,
3692; d) J.-E. Bꢂckvall, Y. I. M. Nilsson, P. G. Ander-
sson, R. G. P. Gatti, J. Wu, Tetrahedron Lett. 1994, 35,
5713; e) T. R. Hoye, J. Wang, J. Am. Chem. Soc. 2005,
127, 6950; f) G. Zhu, Z. Zhang, J. Org. Chem. 2005, 70,
3339.
ACHTUNGTRENNUNGbraces the halopalladation of acetylenes with the ad-
dition of allenes, and thus greatly broadens the scope
and synthetic utility of the halopalladation reaction.
In addition, the easy incorporation of the resultant
polyene products into the Diels–Alder reaction
makes it a rather interesting and efficient method for
the synthesis of cyclic compounds. Further investiga-
tions on the synthetic applications of this protocol are
currently underway in this group.
Experimental Section
General Procedure for Pd-Catalyzed Coupling of
Alkynyl Halides with 2,3-Butadienyl Acetates
[4] a) J. Huang, L. Zhou, H. Jiang, Angew. Chem. 2006,
118, 1979; Angew. Chem. Int. Ed. 2006, 45, 1945; b) H.
Jiang, X. Liu, L. Zhou, Chem. Eur. J. 2008, 14, 11305;
c) H. Jiang, C. Qiao, W. Liu, Chem. Eur. J. 2010, 16,
10968.
[5] a) Y. Liang, S. Tang, X.-D. Zhang, L.-Q. Mao, Y.-X.
Xie, J.-H. Li, Org. Lett. 2006, 8, 3017; b) S. Tang, Q.-F.
Yu, P. Peng, J.-H. Li, P. Zhong, R.-Y. Tang, Org. Lett.
2007, 9, 3413; c) X.-C. Huang, F. Wang, Y. Liang, J.-H.
Li, Org. Lett. 2009, 11, 1139.
To a mixture of 3d (84 mg, 0.75 mmol) and PdACTHUNRGTNEUNG(OAc)2
(5.6 mg, 0.025 mmol) in 2 mL of acetonitrile was added 1a
(73 mg, 0.5 mmol). After stirring for 5 h at 608C, the reac-
tion mixture was concentrated and purified by column chro-
matography on silica (petroleum ether) to give (Z)-4aa as a
yellow solid; yield: 115 mg (85%); mp 59–618C (petroleum
ether); Z/E:> 95/5. The stereochemistry was assigned by
NOE measurements. 1H NMR (CDCl3, 400 MHz): d=5.11
(s, 2H), 5.32 (d, J=10.8 Hz, 1H), 5.47 (d, J=17.6 Hz, 1H),
6.21 (dd, J=17.6, 10.8 Hz, 1H), 7.26–7.28 (m, 3H), 7.33–7.35
(m, 2H); 13C NMR (CDCl3, 100 MHz): d=118.1, 121.4,
122.7, 126.7, 128.0 (2C), 128.3 (2C), 128.7, 135.3, 139.3,
145.9; MS (70 eV, EI): m/z (%)=316 (2.5), 314 (4.6), 312
(M+, 2.5), 235 (22), 233 (M+-Br, 21); HR-MS: m/z=
311.9154, calcd. for C12H10Br2: 311.9149.
[6] X. Chen, W. Kong, H. Cai, L. Kong, G. Zhu, Chem.
Commun. 2011, 47, 2164.
[7] a) S. L. Schreiber, Science 2000, 287, 1964; b) M. D.
Burke, S. L. Schreiber, Angew. Chem. 2004, 116, 48;
Angew. Chem. Int. Ed. 2004, 43, 46.
[8] Crystallographic data for (Z)-4ca: C12H10BrCl (267.97),
monoclinic, space group P21/c, a=7.224(15) ꢃ, b=
9.676(2) ꢃ, c=16.487(4) ꢃ, U=1135.1(4) ꢃ3, Z=4,
specimen 0.298ꢄ0.141ꢄ0.088 mm3, T=296(2) K, Sie-
mens P4 diffractometer, absorption coefficient
3.814 mmÀ1, reflections collected 6924, independent re-
flections 1996 [R
ACHTUNGTRNE(NUNG int)=0.0467], refinement by full-
matrix least-squares on F2, data/restraints/parameters
Adv. Synth. Catal. 2011, 353, 1474 – 1478
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1477