1424
A. Kamath et al. / Spectrochimica Acta Part A 79 (2011) 1418–1424
final decomposition products left are 32%, 31%, 40% and 41% for
cobalt, nickel, copper and zinc complexes respectively. The frag-
mentation patterns of the thermograms agree well with theoretical
calculations and support the stereochemical and stoichiometrical
assignments.
Acknowledgments
The authors thank the USIC and Department of Chemistry, Kar-
natak University, Dharwad for providing spectral facility. Recording
of FAB mass spectra (CDRI Lucknow) and ESR spectra (IIT Bom-
bay) are gratefully acknowledged. One of the authors (AK) thanks
UGC for providing Research Fellowship in Science for Meritorious
Students.
3.9. Electrochemistry
meter in the working potential range of −1 to +1 V at three different
scan rates viz., 0.05, 0.1 and 0.15 V/s under the nitrogen atmo-
sphere. The voltammograms of the copper complex is shown in
References
[1] N.A. Illan-Cabeza, F. Hueso-Urena, M.N. Moreno-Carretero, J.M. Martinez-
Martos, M.J. Ramirez-Exposito, J. Inorg. Biochem. 102 (2008) 647–655.
[2] S. Sreedaran, K. Shanmuga Bharathi, A. Kalilur Rahiman, L. Jagadish, V. Kavi-
yarasan, V. Narayanan, J. Incl. Phenom. Macrocycl. Chem. 66 (2010) 297–306.
[3] S. Sreedaran, K.S. Bharathi, A.K. Rahiman, R. Prabu, R. Jagadesh, N. Raaman, V.
Narayanan, Trans. Met. Chem. 34 (2009) 33–41.
[4] S.M. Annigeri, A.D. Naik, U.B. Gangadharmath, V.K. Revankar, V.B. Mahale,
Trans. Met. Chem. 27 (2002) 316–320.
[5] S.J. Smith, C.J. Noble, R.C. Palmer, G.R. Hanson, G. Schenk, L.R. Gahan, M.J. Riley,
J. Biol. Inorg. Chem. 13 (2008) 499–510.
[6] N.H. Pilkington, R. Robson, Aust. J. Chem. 23 (1970) 2225–2236.
[7] L.K. Thompson, C.J. Matthews, L. Zhao, Z.Q. Xu, D.O. Miller, C. Wilson, M.A. Leech,
J.A.K. Howard, S.L. Heath, A.G. Whittaker, R.E.P. Winpenny, J. Solid State Chem.
159 (2001) 308–320.
[8] P. Gamez, P. de Hoog, M. Lutz, W.L. Driessen, A.L. Spek, J. Reedijk, Polyhedron
22 (2003) 205–210.
Fig. 4. In the electrochemical investigation, the anodic peak (Epa
)
observed in the voltammogram at 0.467, 0.482, 0.481 V repre-
sents oxidation (CuII → CuIII) at varying scan rates of 0.05, 0.1,
and 0.15 V/s, respectively. The corresponding cathodic potential
scans give peaks (Epc) at 0.311, 0.342, 0.339 V representing reduc-
tion (CuIII → CuII). The high value of ꢅEp, separation between the
cathodic and anodic peak potentials (Epa − Epc > 60 mV), indicates
quasi-reversible nature of the redox process [33]. Ipc/Ipa is almost
constant but not unity which further supports the quasireversible
nature of electron transfer process [34]. Ligand and other com-
plexes are found to be electrochemically innocent.
[9] A. Maspero, S. Brenna, S. Galli, A. Penoni, J. Organomet. Chem. 672 (2003)
123–129.
[10] M.T. Bujaci, X.T. Wang, S.J. Li, C. Zheng, Inorg. Chim. Acta 333 (2002) 152–154.
[11] P.A. Vigato, S. Tamburini, Coord. Chem. Rev. 248 (2004) 1717–2128.
[12] S. Khanra, T. Weyhermüller, E. Bill, P. Chaudhuri, Inorg. Chem. 45 (2006)
5911–5923.
[13] P. Jiang, Z. Guo, Coord. Chem. Rev. 248 (2004) 205–229.
[14] P. Roy, K. Dhara, M. Manassero, J. Ratha, P. Banerjee, Inorg. Chem. 46 (2007)
6405–6412.
[15] T. Chattopadhyay, M. Mukherjee, K.S. Banu, A. Banerjee, E. Suresh, E. Zangrando,
D. Das, J. Coord. Chem. 62 (2009) 967–979.
[16] G. Alang, R. Kaur, A. Singh, P. Budhlakoti, A. Singh, R. Sanwal, Int. J. Pharm. Biol.
[17] H. Ucar, K. Van derpoorten, S. Cacciaguerra, S. Spampinato, J.P. Stables, P. Depo-
vere, M. Isa, B. Masereel, J. Delarge, J.H. Poupaert, J. Med. Chem. 41 (1998)
1138–1145.
[18] A.R. Barde, H.K. Barsu, A.S. Bobade, Indian Drugs 35 (1998) 554–557.
[19] C.D. Prouillac, P. Hernandez, C. Amourette, M. Diserbo, C. Lion, G. Rima, Bioorg.
Med. Chem. 17 (2009) 5275–5284.
[20] A.I. Vogel, Text Book of Practical Organic Chemistry, 5th ed., Longman, London,
1989.
[21] D.A. Denton, H. Suschitzky, J. Chem. Soc. (1963) 4741–4743.
[22] A.M. El-Hendawy, A.H. Alkubaisi, A.G. El-Ghany El-Kourashy, M.M. Shanab,
Polyhedron 12 (1993) 2343–2350.
3.10. Antimicrobial analysis
The ligand and its complexes were screened for antibacterial
activity against Staphylococcus aureus, Escherichea coli, Pseu-
domonas aeruginosa and antifungal activity against Aspergillus
niger, Candida albicans by turbidity method at 100 g ml−1 using
Gentamycin (for bacteria) and Amphotericin (for fungi) as stan-
dards. The minimum inhibitory concentration (MIC) is fixed to be
5–50 g ml−1 accordingly. Schiff base is highly active against P.
aeruginosa and the activity increased on complexation. Increase in
activity is may be due to the metal chelation which makes com-
plexes, more powerful and potent bactereostatic agents [35,36].
has been increased on complexation with cobalt and copper. Lig-
and is moderately active against S. aureus whereas complexes
have not shown any activity against E. coli. The data is sum-
marized in Table 4 and the same is represented graphically
in Fig. 5.
[23] K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination Com-
pounds, Wiley Interscience, New York, 1971.
[24] S.M.E. Khalil, J. Chem. Pap. 54 (2000) 12–18.
[25] M. Shebl, H.S. Seleem, B.A. El-Shetary, Spectrochim. Acta A 75 (2010) 428–436.
[26] I.B. Bersuker, Electronic Structure and Properties of Transition Metal Com-
pounds, Wiley, New York, 1996.
4. Conclusion
[27] E.W. Ainssough, A.M. Brodie, J. Rangford, J.M. Waters, J. Chem. Soc. Dalton Trans.
(1997) 279–282.
[28] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, 1968.
[29] S.A. Sallam, A.S. Orabi, Trans. Met. Chem. 27 (2002) 447–453.
[30] A.D. Naik, V.K. Revankar, Proc. Indian Acad. Sci. (Chem. Sci.) 113 (2001)
285–290.
[31] W.J. Geary, Coord. Chem. Rev. 81 (1971) 81–122.
[32] M. Shakir, S.P. Varkey, I.S. Hameed, Polyhedron 13 (1994) 1355–1361.
[33] C.L. Bailey, R.D. Bereman, D.P. Rillema, Inorg. Chem. 25 (1986) 3149–3153.
[34] S. Budagumpi, U.N. Shetti, N.V. Kulkarni, V.K. Revankar, J. Coord. Chem. 62
(2009) 3961–3968.
Ligand reported in this article is tetranucleating towards the
later first row transition metal ions. All synthesized complexes have
[M4L(-Cl2)Cl4(H2O)6]·nH2O composition and octahedral geome-
try. All complexes are monomers and non-electrolytic in nature.
Antiferromagnetic interaction is present between the metal ions
in copper complex via phenoxide bridge. Ligand is fluorescence
active and can act as fluorescence sensor for zinc. The copper com-
plex has shown quasireversible redox responses over the applied
potential range, whereas ligand and other complexes are found to
be electrochemically innocent. All compounds have shown good
antimicrobial activity.
[35] Z.H. Chohan, A. Scozzafava, C.T. Supuran, J. Enzyme Inhib. Med. Chem. 18 (2003)
259–263.
[36] N. Dharamraj, P. Viswanathamurthi, K. Natrajan, Trans. Met. Chem. 26 (2001)
105–109.