ORGANIC
LETTERS
2011
Vol. 13, No. 16
4316–4319
Sequential Rhodium-, Silver-, and
Gold-Catalyzed Synthesis of Fused
Dihydrofurans
Hengbin Wang,† Justin R. Denton,‡ and Huw M. L. Davies*,†
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia
30322, United States, and Department of Chemistry, University at Buffalo, The State
University of New York, Buffalo, New York 14260-3000, United States
Received June 20, 2011
ABSTRACT
A triple cascade process was developed for the rapid synthesis of polycyclic benzo-fused dihydrofurans. The first step is a rhodium-catalyzed
cyclopropanation of R-aryldiazoketones with alkenes. This is followed by a silver-catalyzed ring expansion to dihydrofurans, which then undergo
a gold-catalyzed cyclization to form benzo-fused dihydrofurans.
A feature of the metal-catalyzed reactions of diazo
compounds is the formation of highly energetic metal-
carbenoid intermediates under very mild reaction condi-
tions. The resulting carbenoid reactions often generate
strained or reactive products, capable of undergoing
further transformations.1,2 Our group has developed a
variety of cascade reactions using carbenoid intermediates,
such as ylide formation/[3 þ 2] cycloaddition,3 ylide
formation/[2,3] sigmatropic rearrangement,4 and cyclo-
propanation/Cope rearrangement.5 An alternative way
of achieving a cascade sequence is to conduct a further
metal-catalyzed transformation through multicatalytic
processes.6 We have been interested in developing syn-
thetic sequences that combine the rhodium-catalyzed reac-
tions with other complementary metal-catalyzed reactions
with orthogonal reactivity.7 In this paper we describe a
triple cascade sequence that involves sequential rhodium-,
silver-, and gold-catalyzed reactions.
† Emory University.
‡ University at Buffalo, The State University of New York.
(1) For reviews: (a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L.
Chem. Rev. 2010, 110, 704. (b) Padwa, A. Chem. Soc. Rev. 2009, 38, 3072.
(c) Padwa, A. J. Org. Chem. 2009, 74, 6421. (d) Davies, H. M. L.;
Beckwith, R. E. Chem. Rev. 2003, 103, 2861. (e) Padwa, A.; Weingarten,
M. D. Chem. Rev. 1996, 96, 223.
(5) For examples: (a) Schwartz, B. D.; Denton, J. R.; Lian, Y.;
Davies, H. M. L.; Williams, C. M. J. Am. Chem. Soc. 2009, 131, 8329.
(b) Olson, J. P.; Davies, H. M. L. Org. Lett. 2008, 10, 573. (c) Reddy,
R. P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312. (d) Davies,
H. M. L.; Loe, Ø.; Stafford, D. G. Org. Lett. 2005, 7, 5561.
(2) For recent examples: (a) Jiang, J.; Xu, H.; Xi, J.; Ren, B.; Lv, F.;
Guo, X.; Jiang, L.; Zhang, Z.; Hu, W. J. Am. Chem. Soc. 2011, 133, 8428.
(b) Zhu, Y.; Zhai, C.; Yang, L.; Hu, W. Eur. J. Org. Chem. 2011, 1113. (c)
Hu, W.; Xu, X.; Zhou, J.; Liu, W.; Huang, H.; Hu, J.; Yang, L.; Gong, L.
J. Am. Chem. Soc. 2008, 130, 7782. (d) Liu, Y.; Bakshi, K.; Zavalij, P.;
Doyle, M. P. Org. Lett. 2010, 12, 4304. (e) England, D. B.; Padwa, A. J.
Org. Chem. 2008, 73, 2792.
(6) For examples: (a) Guan, X.; Yang, L.; Hu, W. Angew. Chem., Int.
Ed. 2010, 49, 2190. (b) Guo, Z.; Cai, M.; Jiang, J.; Yang, L.; Hu, W. Org.
Lett. 2010, 12, 652. (c) Davi, M.; Lebel, H. Chem. Commun. 2008, 4974.
ꢀ
(d) Lebel, H.; Ladjel, C.; Brethous, L. J. Am. Chem. Soc. 2007, 129,
13321.
(7) (a) Deng, L.; Giessert, A. J.; Gerlitz, O. O.; Dai, X.; Diver, S. T.;
Davies, H. M. L. J. Am. Chem. Soc. 2005, 127, 1342. (b) Ni, A.; France,
J. E.; Davies, H. M. L. J. Org. Chem. 2006, 71, 5594.
(3) Lian, Y.; Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 440.
(4) Li, Z.; Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 396.
r
10.1021/ol2016548
Published on Web 07/19/2011
2011 American Chemical Society