Crystal Growth & Design
COMMUNICATION
’ REFERENCES
(1) (a) Buck, U.; Huisken, F. Chem. Rev. 2000, 100, 3863–3890. (b)
Ludwig, R. ChemPhysChem 2000, 1, 53–56. (c) Ludwing, R. Angew.
Chem., Int. Ed. 2001, 40, 1808–1827. (d) Head-Gordon, T.; Hura, G.
Chem. Rev. 2002, 102, 2651–2670. (e) Infantes, L.; Motherwell, S.
CrystEngComm 2002, 4, 454–461. (f) Keutsch, F.; Cruzan, J. D.; Saykally,
R. J. Chem. Rev. 2003, 103, 2533–2577. (g) Mascal, M.; Infantes, L.;
Chisholm, J. Angew. Chem., Int. Ed. 2006, 45, 32–36. (h) Nangia, A. Water
Clusters in Crystal Hydrates. In Encyclopedia of Supramolecular Chemistry;
Atwood, J. L., Steed, J. A., Eds.; Marcel Dekker: New York, 2007; Vol. 1,
pp 1ꢀ9. (i) Fucke, K.; Steed, J. W. Water 2010, 2, 333–350.
(2) (a) Yu, L. Adv. Drug Delivery Rev. 2001, 48, 27–42. (b) Vogt,
F. G.; Brum, J.; Katrincic, L. M.; Flach, A.; Socha, J. M.; Goodman, R. M.;
Haltiwanger, R. C. Cryst. Growth Des. 2006, 10, 2333–2354.
(3) (a) Kiang, Y.-H.; Xu, W.; Stephens, P. W.; Ball, R. G.; Yasudas, N.
Cryst. Growth Des. 2009, 9, 1833–1843. (b) Zhao, X. S.; Siepmann, J. H.;
Xu, W.; Kiang, Y.-H.; Sheth, A. R.; Karaborni, S. J. Phys. Chem. B 2009,
113, 5929–5937. (c) Ruscica, R.; Bianchi, M.; Quintero, M.; Martinez,
A.; Vega, D. R. J. Pharm. Sci. 2010, 99, 4962–4972. (d) Fujii, K.; Uekusa,
H.; Itoda, N.; Hasegawa, G.; Yonemochi, E.; Terada, K.; Pan, Z.; Harris,
K. D. M. J. Phys. Chem. C 2010, 114, 580–586. (e) Takata, N.; Takano,
R.; Uekusa, H.; Hayashi, Y.; Terada, K. Cryst. Grwoth Des. 2010,
10, 2116–2122. (f) Clarke, H. D.; Arora, K. K.; Bass, H.; Kavuru,
P.; Ong, T. t.; Pujari, T.; Wojtas, L.; Zaworotko, M. J. Cryst. Growth
Des. 2010, 10, 2152–2167. (g) Lutker, K. M.; Quin~ones, R.; Xu, J.;
Ramamoorthy, A.; Matzger, A. J. J. Pharm. Sci. 2011, 100, 949–963.
(4) (a) Barbour, L. J.; Orr, G. W.; Atwood, J. L. Nature 1998, 393,
671–673. (b) Blanton, W. B.; Gordon-Wylie, S. W.; Clark, G. R.; Jordan,
K. D.; Wood, J. T.; Geiser, U.; Collins, T. J. J. Am. Chem. Soc. 1999,
121, 3551–3552. (c) Barbour, L. J.; Orr, G. W.; Atwood, J. L. Chem.
Commun. 2000, 859–860. (d) Doedens, R. J.; Yohannes, E.; Khan, M. I.
Chem. Commun. 2002, 62–63. (e) Ghosh, S. K.; Bharadwaj, P. K. Inorg.
Chem. 2003, 42, 8250–8254. (f) Ma, B.-Q.; Sun, H.-L.; Gao, S. Chem.
Commun 2004, 2220–2221. (g) Yoshizawa, M.; Kusukawa, T.; Kawano,
M.; Ohhara, T.; Tanaka, I.; Kurihara, K.; Niimura, N.; Fujita, M. J. Am.
Chem. Soc. 2005, 127, 2798–2799. (h) Luna-García, R.; Damiꢀan-Murillo,
B. M.; Barba, V.; H€opfl, H.; Beltrꢀan, H. I.; Zamudio-Rivera, L. S. Chem.
Commun. 2005, 5527–5529. (i) Zuhayra, M.; Kampen, W. U.; Henze, E.;
Soti, Z.; Zsolnai, L.; Huttner, G.; Oberdorfer, F. J. Am. Chem. Soc. 2006,
128, 424–425. (j) Wei, M.; He, C.; Hua, W.; Duan, C.; Li, S.; Meng, Q.
J. Am. Chem. Soc. 2006, 128, 13318–13319. (k) Byrne, P.; Lloyd, G. O.;
Clarke, N.; Steed, J. W. Angew. Chem., Int. Ed. 2008, 47, 5761–5764. (l)
Bai, S.-Q.; Hor, T. S. A. Chem. Commun. 2008, 3172–3174. (m) Bi, Y.;
Liao, W.; Zhang, H.; Li, D. CrystEngComm 2009, 11, 1213–1216. (n) Li,
J.; Yu, J.; Xu, R. Phys. Chem. Chem. Phys. 2009, 11, 1291–1293. (o) Duan,
C.; Wei, M.; Guo, D.; He, C.; Meng, Q. J. Am. Chem. Soc. 2010,
132, 3321–3330. (p) Sun, D.; Wang, D.-F.; Zhang, N.; Husang, R.-B.;
Zheng, L.-S. Cryst. Growth Des. 2010, 10, 5031–5033. (q) Sang, R.-L.;
Xu, L. CrystEngComm 2010, 12, 1377–1381.
(5) (a) Custelcean, R.; Afloroaei, C.; Vlassa, M.; Polverejan, M.
Angew. Chem., Int. Ed. 2000, 39, 3094–3096. (b) Atwood, J. L.; Barbour,
L. J.; Ness, T. J.; Raston, C. L.; Raston, P. L. J. Am. Chem. Soc. 2001,
123, 7192–7193. (c) Moorthy, J. N.; Natarajan, R.; Venugopalan, P.
Angew. Chem., Int. Ed. 2002, 41, 3417–3420. (d) Sankaran, S. P. N. B.;
Samanta, A. Angew. Chem., Int. Ed. 2003, 42, 1741–1743. (e) Raghuramna,
K.; Katti, K. K.; Barbour, L. J.; Pillarsetty, N.; Barnes, C. L.; Katti, K. V.
J. Am. Chem. Soc. 2003, 125, 6955–6961. (f) Ma, B.-Q.; Sun, H.-L.; Gao,
S. Angew. Chem., Int. Ed. 2004, 43, 1374–1376. (g) Ghosh, S. K.;
Bharadwaj, P. K. Angew. Chem., Int. Ed. 2004, 43, 3577–3580. (h) Ma,
B.-Q.; Sun, H.-L.; Gao, S. Chem. Commun. 2004, 2220–2221. (i) Oxtoby,
N. S.; Blake, A. L.; Champness, N. R.; Wilson, C. Chem.—Eur. J. 2005,
11, 4643–4654. (j) Lakshminarayanan, P. S.; Suresh, E.; Ghosh, P. J. Am.
Chem. Soc. 2005, 127, 13132–13133. (k) Lakshminarayanan, P. S.;
Suresh, E.; Ghosh, P. Angew. Chem., Int. Ed. 2006, 45, 3807–3811. (l)
Kang, S. O.; Powell, D.; Day, V. W.; Bowman-James, K. Cryst. Growth
Des. 2007, 7, 606–608. (m) Li, Y.; Jiang, L.; Feng, X.-L.; Lu, T.-B. Cryst.
Growth Des. 2008, 8, 3689–3694. (n) Xu, W.-Z.; Sun, J.; Huang, Z.-T.;
Figure 5. Packing diagram of crystal 3 4H2O: (a) view of the 1D
3
channels including water molecules; (b) side view of the channel
structure; (c) top view of the H-bonding network (green circle in
part b). Zwitterions 3 are colored in cyan except the representative
molecules. H-bonds are indicated with black dotted lines.
molecules are in the range ca. 2.77ꢀ2.88 Å (see Table S4 in the
Supporting Information). Those between the oxygen atom of the
water molecule and the carboxylate moieties are in the range ca.
2.71ꢀ2.94 Å.
As we have shown, biszwitterionic imidazolium carboxylates
behave as good hydrogen bonding acceptors to clip water
molecules to create zwitterionic water channels. Depending on
the size and the shape of the aromatic spacers, water channels can
be modified. Pseudopolymorphism originating in the way of
stacking of aromatic spacers can also provide diversity in the type
of generated water channels.
’ ASSOCIATED CONTENT
S
Supporting Information. Preparation information and spec-
b
tral data of 1, 2, and 3, and the crystallographic information of
1 5H2O, 2 4H2O, 2 5.5H2O, and 3 4H2O. This material is
3
3
3
3
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: kohmoto@faculty.chiba-u.jp.
3701
dx.doi.org/10.1021/cg200232b |Cryst. Growth Des. 2011, 11, 3698–3702