LETTER
Synthesis of Imidazolium-Tagged Ruthenium Carbene Complex
1807
(2) For reviews on cross metathesis, see: (a) Gibson, S. E.;
Keen, S. P. Top. Organomet. Chem. 1998, 1, 155.
(b) Connon, S. J.; Blechert, S. Angew. Chem. Int. Ed. 2003,
42, 1900. (c) Vernall, A. J.; Abell, A. D. Aldrichimica Acta
2003, 36, 93.
(3) For reviews on enyne metathesis, see: (a) Mori, M. Top.
Organomet. Chem. 1998, 1, 133. (b) Poulsen, C. S.;
Madsen, R. Synthesis 2003, 1. (c) Diver, S. T.; Giessert, A.
J. Chem. Rev. 2004, 104, 1317. (d) Mori, M. J. Mol. Catal.
A: Chem. 2004, 213, 73. (e) Mori, M. Adv. Synth. Catal.
2007, 349, 121.
(4) (a) Ionic Liquids in Synthesis; Wasserschid, P.; Welton, T.,
Eds.; Wiley-VCH: Weinheim, 2003. (b) Welton, T. Chem.
Rev. 1999, 99, 2071. (c) Wasserschid, P.; Keim, W. Angew.
Chem. Int. Ed. 2000, 39, 3772. (d) Sheldon, R. Chem.
Commun. 2001, 2399. (e) Dupont, J.; de Souza, R. F.;
Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. (f) Zhao, H.;
Malhotra, S. V. Aldrichimica Acta 2002, 35, 75.
At first, RCM of diethyl diallylmalonate 10 (Scheme 3)
using new catalyst 1a was attempted (Table 1). When the
reaction was carried out under an argon atmosphere in the
presence of 5 mol% 1a in CH2Cl2/[Bmim]BF4 (9:1) at
room temperature, the starting material was consumed af-
ter 0.5 hours to provide 11 in 94% yield (entry 1, cycle 1).
After extraction of the product from an ionic liquid with
Et2O,14 a second loading of 10 was added to an ionic liquid
containing ruthenium carbene complex 1a. The reuse of
1a was achieved, and cyclization product 11 was obtained
in 44% yield (entry 1, cycle 2). The effect of a counter-
anion on ionic liquid as a solvent was examined by chang-
–
–
ing from BF4 to PF6 (entry 2).
When the first run of 10 with 1a in CH2Cl2/[Bmim]PF6
(9:1) was done, a quick conversion of 10 to 11 was ob-
served and 11 was isolated in 85% yield (cycle 1). A grat-
ifying result was obtained in the second run, and the third
cycle led to a 71% yield of 11 and a longer reaction time.
(g) Pârvulescu, V. I.; Hardacre, C. Chem. Rev. 2007, 107,
2615.
(5) Chauvin, Y.; Gilbert, B.; Guibard, I. J. Chem. Soc., Chem.
Commun. 1990, 1715.
Catalyst 1b was also examined in regard to RCM of 10
(Table 2). Ring-closing metathesis was carried out in the
presence of 5 mol% 1b at room temperature. Continuous
fast conversion was observed, and reliable reusability was
realized until the fifth cycle.
(6) Carlin, R. T.; Wilkes, J. S. J. Mol. Catal. 1990, 63, 125.
(7) (a) Buijsman, R. C.; van Vuuren, E.; Sterrenburg, J. G. Org.
Lett. 2001, 3, 3785. (b) Sémeril, D.; Olivier-Bourbigou, H.;
Bruneau, C.; Dixneuf, P. H. Chem. Commun. 2002, 146.
(c) Csihony, S.; Fischmeister, C.; Bruneau, C.; Horváth, I.
T.; Dixneuf, P. H. New J. Chem. 2002, 26, 1667. (d) Ding,
X.; Lv, X.; Hui, B.; Chen, Z.; Xiao, M.; Guo, B.; Tang, W.
Tetrahedron Lett. 2006, 47, 2921. (e) Williams, D. B. G.;
Ajam, M.; Ranwell, A. Organometallics 2006, 25, 3088.
(f) Han, S.-H.; Hirakawa, T.; Fukuba, T.; Hayase, S.;
Kawatsura, M.; Itoh, T. Tetrahedron: Asymmetry 2007, 18,
2484.
(8) (a) Audic, N.; Clavier, H.; Mauduit, M.; Guillemin, J.-C.
J. Am. Chem. Soc. 2003, 125, 9248. (b) Yao, Q.; Zhang, Y.
Angew. Chem. Int. Ed. 2003, 42, 3395. (c) Clavier, H.;
Audic, N.; Mauduit, M.; Guillemin, J.-C. Chem. Commun.
2004, 2282. (d) Thurier, C.; Fischmeister, C.; Bruneau, C.;
Olivier-Bourbigou, H.; Dixneuf, P. H. J. Mol. Catal. A:
Chem. 2007, 268, 127. (e) Rix, D.; Caïjo, F.; Laurent, I.;
Gulajski, L.; Grela, K.; Mauduit, M. Chem. Commun. 2007,
3771.
(9) (a) Wakamatsu, H.; Blechert, S. Angew. Chem. Int. Ed.
2002, 41, 794. (b) Wakamatsu, H.; Blechert, S. Angew.
Chem. Int. Ed. 2002, 41, 2403. (c) Buschmann, N.;
Wakamatsu, H.; Blechert, S. Synlett 2004, 667.
(10) (a) Kemp, D. S.; Wang, S.-W.; Mollan, R. C.; Hsia, S.-L.;
Confalone, P. N. Tetrahedron 1974, 30, 3677. (b) Nicolosi,
G.; Piattelli, M.; Sanfilippo, C. Tetrahedron 1993, 49, 3143.
(11) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953.
Next, tolerance for miscellaneous substrates with recycla-
bility was tested (Table 3). The construction of five-to-
eight-membered rings smoothly proceeded by the same
catalyst in an ionic liquid solution to provide products in
quantitative yield (entry 1, cycle 1–4), and additional ring
closure of a five-membered ring also succeeded (cycle 5).
Trisubstituted olefin was obtained in high yield (entry 2,
cycles 1 and 2), and ene-yne metathesis proceeded to pro-
vide diene derivative 25 (cycle 3) with good reusability of
the catalyst (cycles 4–7).
We have studied the synthesis of a new ionic liquid sup-
ported ruthenium carbene complex 1a,b and its applica-
tions to olefin metathesis. These catalysts can be used for
ring-closing metathesis of miscellaneous substrates with
excellent activity and very good recyclability. Further
studies of ionic liquid supported catalysts and the field of
metathesis in ionic liquids are in progress in our laborato-
ry.
Acknowledgment
This work was supported by Tohoku Pharmaceutical University.
(12) Procedure for the Synthesis of Catalyst 1b
To a solution of 9 (184.9 mg, 0.22 mmol) and CuCl (21.6
mg, 0.22 mmol) in CH2Cl2 (20 mL) was added 8b (120.3 mg,
0.26 mmol). The reaction mixture was stirred at reflux for 9
h under argon atmosphere. The volatiles were removed
under reduce pressure. The residue was purified by column
chromatography on SiO2 (CH2Cl2–acetone, 3:1) to afford 1b
(137.2 mg, 68%). 1H NMR (400 MHz, CD2Cl2): d = 1.14 (d,
J = 6.3 Hz, 6 H), 1.66–1.74 (m, 2 H), 1.89–1.94 (m, 2 H),
2.20–2.65 (br, 18 H), 3.72 (s, 3 H), 4.06 (t, J = 5.7 Hz, 2 H),
4.08 (t, J = 6.9 Hz, 2 H), 4.16 (s, 4 H), 5.64 (sept, J = 6.3 Hz,
1 H), 6.56 (dd, J = 1.3, 7.5 Hz, 1 H), 6.87 (dd, J = 7.5, 8.2
Hz, 1 H), 7.06 (br, 4 H), 7.11 (dd, J = 1.3, 8.2 Hz, 1 H), 7.13
(dd, J = 1.9, 1.9 Hz, 1 H), 7.25 (dd, J = 1.3, 1.9 Hz, 1 H),
8.48 (br, 1 H), 16.57 (s, 1 H). 13C NMR (100 MHz, CD2Cl2):
References and Notes
(1) (a) Handbook of Metathesis, Vol. 1-3; Grubbs, R. H., Ed.;
Wiley-VCH: Weinheim, 2003. (b) For selected general
review, see: Topics in Organometallic Chemistry, Vol. 1;
Fürstner, A., Ed.; Springer: Berlin, Heidelberg, 1998.
(c) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl.
1997, 36, 2037. (d) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413. (e) Fürstner, A. Angew. Chem. Int. Ed.
2000, 39, 3012. (f) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D.
Angew. Chem. Int. Ed. 2005, 44, 4490. (g) Hoveyda, A. H.;
Zhugralin, A. R. Nature (London) 2007, 450, 243.
Synlett 2008, No. 12, 1805–1808 © Thieme Stuttgart · New York