Please do not adjust margins
Green Chemistry
Page 4 of 6
COMMUNICATION
Journal Name
H
NaBH4(4.0 eq.), 100 oC, 24 h
1,4-dioxane , Catalyst-free
DOI: 10.1039/C9GC03637G
N
O
N
15207-15212; (b) V. B. Saptal and B. M. Bhanage,
ChemSusChem, 2016, 9, 1980-1985; (c) V. B. Saptal, G.
Juneja and B. M. Bhanage, New J. Chem., 2018, 42, 15847-
15851; (d) F. K. Fernandez-Alvarez and L. A. Oro,
ChemCatChem, 2018, 10, 4783-4796; (e) A. Tlili, X. Frogneux,
E. Blondiaux and T. Cantat, Angew. Chem. Int. Ed., 2014, 53,
2543-2545; (f) Y. Li, X. Cui, K. Dong, K. Junge and M. Beller,
ACS Catal., 2017, 7, 1077-1086; (g) A. Tlili, E. Blondiaux, X.
Frogneux and T. Cantat, Green Chem., 2015, 17, 157-168; (h)
R. H. Lam, C. M. A. McQueen, I. Pernik, R. McBurney, A. F.
Hill and B. A. Messerle, Green Chem., 2019, 21, 538-549.
2a
3a
No reaction
(Eq. 7)
Based on the experimental results and previous reports,3-7
a
possible reaction mechanism is proposed (Scheme 3). Firstly, CO2
reacts with NaBH4 in DMF to produce the Int.1. Then, amine as a
nucleophilic reagent attacks the carbon atom of intermediate Int.1
to form the N-formylation product. For N-methylation process, CO2
reacts with NaBH4 in 1,4-dioxane to produce Int.1, followed by
further reaction with NaBH4 affords intermediate Int.2. Finally, the
nucleophilic reagent of amine attacks the carbon atom of
intermediate Int.2 to form the N-methylated product. In fact, the
effect of solvent is still not clear in above processes, we speculated
that both DMF and 1,4-dioxane coordinated to sodium ion,7a,14
making the insertion of CO2 much easier to form the intermediate,
and led to the reaction with selectivity to afford desired formamides
and methylamines.
3. (a) L. Zhang, Z. Han, X. Zhou, Z. Wang and K. Ding, Angew.
Chem. Int. Ed., 2015, 54, 6186-6189; (b) T. V. Q. Nguyen, W.
Yoo and S. Kobayashi, Angew. Chem. Int. Ed., 2015, 54,
9209-9212; (c) X. Cui, Y. Zhang, Y. Deng and F. Shi, Chem.
Commun., 2014, 50, 13521-13524; (d) H. Liu, Q. Mei, Q. Xu,
J. Song, H. Liu and B. Han, Green Chem., 2017, 19, 196-201;
(e) O. Jacquet, X. Frogneux, C. D. N. Gomes and T. Cantat,
Chem. Sci., 2013, 4, 2127-2131; (f) U. Jayarathne, N. Hazari
and W. H. Bernskoetter, ACS Catal., 2018, 8, 1338-1345.
4. (a) C. D. N. Gomes, O. Jacquet, C. Villiers, P. Thuery, M.
Ephritikhine and T. Cantat, Angew. Chem. Int. Ed., 2012, 51,
187-190; (b) F. D. Bobbink, S. Das and P. J. Dyson, Nature
Protoc., 2017, 12, 417-428; (c) S. Das, F. D. Bobbink, G.
Lanurenczy and P. J. Dyson, Angew. Chem. Int. Ed., 2014, 53,
12876-12879; (d) Z. Yang, B. Yu, H. Zhang, Y. Zhao, G. Ji, Z.
Ma, X. Gao and Z. Liu, Green Chem., 2015, 17, 4189-4193;
(e) L. Hao, Y. Zhao, B. Yu, Z. Yang, H. Zhang, B. Han, X. Gao
and Z. Liu, ACS Catal., 2015, 5, 4989-4993.
NaH4-nB(OH)n
R1
Int. 2
N
NaH4-nB(OCH3)n
R2
R1R2NH
NaBH4
NaBH4
R1
R1R2NH
NaBH4
CO2
N
O
NaH4-nB(OCOH)n
NaBH4
R2
H
Int. 1
5. (a) C. Fang, C. Lu, M. Liu, Y. Zhu, Y. Fu and B. Lin, ACS Catal.,
2016, 6, 7876-7881; (b) X. Liu, X. Li, C. Qiao, H. Fu and L. He,
Angew. Chem. Int. Ed., 2017, 56, 7425-7429; (c) C. Xie, J.
Song, H. Wu, B. Zhou, C. Wu, B. Han, ACS Sustainable Chem.
Eng., 2017, 5, 7086-7092; (d) G. Li, J. Chen, D. Zhu, Y. Chen
and J. Xia, Adv. Synth. Catal., 2018, 360, 2364-2369; (e) M.
Wang, N. Wang, X. Liu, C. Qiao and L. He, Green Chem., 2018,
20, 1564-1570.
Scheme 3 The possible mechanism of formylation and methylation
of amine using CO2 and NaBH4.
Conclusions
In conclusion, we have developed a catalyst-free and efficient
selective N-methylation and N-formylation of amines for the
synthesis of formaides and methylamines with CO2 as a sustainable
C1 source and inexpensive NaBH4 as a reductant. By tuning solvent
and reaction temperature, both selective N-methylation and N-
formylation of amines can be controlled smoothly, affording desired
products of formaides and methylamines in good yields.
6. (a) H. Lv, Q. Xiang, C. Yue, Z. Lei and F. Li, Chem. Commun.,
2016, 52, 6545-6548; (b) H. Niu, L. Lu, R. Shi, C. Chiang and
A. Lei, Chem. Commun., 2017, 53, 1148-1151; (c) X. Liu, C.
Qiao, X. Li and L. He, Pure Appl. Chem., 2018, 90, 1099-1107.
7. (a) I. Knopf and C.C. Cummins, Organometallics, 2015, 34,
1601-1603; (b) C. V. Picasso, D. A. Safin, I. Dovgaliuk, F.
Deverd, D. Debecker, H. Li, J. Proost and Y. Filinchuk, Int. J.
Hydrogen Energ., 2016, 41, 14377-14386; (c) Z. Lu and T. J.
Williams, ACS Catal., 2016, 6, 6670-6673.
Acknowledgement
This work was supported by Natural Science Special Foundation of
Guizhou University (No. X2019065 Special Post A) and Scientific and
Technological Innovation Talents Team Project of Guizhou Province
(NO.20185607).
8. (a) L. Hao, H. Zhang, X. Luo, C. Wu, Y. Zhao, X. Liu, X. Gao, Y.
Chen and Z. Liu, J. CO2. Utilizat., 2017, 22, 208-211; (b) Z.
Guo, B. Zhang, X. Wei and C. Xi, ChemSusChem, 2018, 11,
2296-2299; (c) H. Liu, Z, Nie, J. Shao, W. Chen and Y. Yu.
Green Chem., 2019, 21, 3552-3555.
Conflicts of interest statement
We have no conflicts of interest to declare.
9. (a) F. A. Chowdhury, H. Yamada, T. Higashii, K. Goto and M.
Onoda, Ind. Eng. Chem. Res., 2013, 52, 8323-8331; (b) T.
Zhao, G. Zhai, J. Liang, P. Li, X. Hu, Y. Wu, Chem. Commun.,
2017, 53, 8046-8049.
Notes and references
1. (a) W. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck and
E. Fujita, Chem. Rev., 2015, 115, 12936-12973; (b) Q. Liu, L.
Wu, R. Jackstell and M. Beller, Nature Comm., 2015, 6, 5933;
(c) R. Francke, B. Schille and M. Roemelt, Chem. Rev., 2018,
118, 4631-4701.
10. J. Song, B. Zhou, H. Liu, C. Xie, Q. Meng, Z. Zhang and B. X. Han,
Green Chem., 2016, 18, 3956-3961.
11. (a) Y. Li, X. Fang, K. Junge and M. Beller, Angew. Chem. Int. Ed.,
2013, 52, 9568-9571; (b) K. Beydoun, T. Stein, J.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins