4096
T. Yamamoto et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4088–4096
found 768.2; Data of low-polar fraction: 1H-NMR (400 MHz, CD3OD): d = 1.85
and 2.00 [m, 8H, H200, H600, H1200and H1600
/b)], 2.60–3.70 [m, 21H, H3, H4,
H5, H6a, H6b, H100, H300, H500, H700, H1100, H1300, H1500 and H1700
/b)], 4.42 [d,
)],6.54 and 6.56 [br
/b)], 7.23 [d, 0.25H, J = 8.0 Hz, H60 of Ph (b)], 7.27 [d,
)], 7.98 [dd, 0.25H, J = 1.8 and 8.0 Hz, H50 of Ph
Scientific Research on Priority Areas (20019003, 20056001, K.Y.),
Research Funds from Research Foundation for Opto-Science and
Technology (K.Y.), and Grant for Hirosaki University Institutional
Research (K.Y.). We are grateful to Dr. Hideaki Matsuoka of Tokyo
University of Agriculture and Technology, Dr. Naoyoshi Chino, Dr.
Kumiko Yoshizawa-Kumagaye and Mr. Takehiro Ishizu of Peptide
Institute, Inc., for their helpful discussions, and Mr. Masahito Kog-
awa and Ms. Rumiko Narita of Hirosaki University for technical
assistance.
(
a
(a
0.25H, J = 8.3 Hz, H1 (b)], 4.90 [d, 0.75H, J = 3.4 Hz, H1 (
a
s ꢀ 2, 2H, H800 and H1000
(a
0.75H, J = 8.0 Hz, H60 of Ph (
a
(b)], 8.02 [dd, 0.75H, J = 1.8 and 8.0 Hz, H50 of Ph (
a
)], 8.54 [d, 0.25H, J = 1.8 Hz,
H30 of Ph (b)], 8.58 [d, 0.75H, J = 1.8 Hz, H30 of Ph (
a)]; MS (ESI) m/z calcd for
C37H42N3O11S2 [M+H]+ 768.2, found 768.2.
18. Dissociation procedure was performed under urethane anesthesia (1.4 g/kg,
i.p.) and neurons were recorded as described previously at 37 °C.
Carbenoxolone (100 lM, SIGMA C4790) was added to the recording solution
to block hemichannels. For details, see: Yamada, K. et al. Science 2001, 292,
1543. C57BL/6J mice were used in accordance with a protocol approved by the
Hirosaki University Institutional Committee for Animal Experimentation.
19. In principle, 2-NBDG (1) entry should produce an increase in the fluorescence
intensity not only in the green but also in the red channel due to the red
component of 2-NBDG (1) spectrum (Fig. 2C, red area). In the experiment in
Fig. 3, however, the detector sensitivity in the red channel was adjusted so that
no such small increase in red fluorescence is discernable, but an abnormal
entry of 2-TRLG (4) could easily be noticed.
20. Speizer, L.; Haugland, R.; Kutchai, H. Biochim. Biophys. Acta 1995, 815, 75.
21. Cheng, Z.; Xiong, Z.; Gheysens, O.; Keren, S.; Chen, X.; Gambhir, S. S.
Bioconjugate Chem. 2006, 17, 662.
22. Kovar, J. L.; Volcheck, W.; Sevick-Muraca, E.; Simpson, M. A.; Olive, D. M. Anal.
Biochem. 2009, 384, 254.
23. Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 7215.
24. Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31,
805.
25. Muci, A. R.; Buchwald, S. L. In Topics in Current Chemistry; Miyaura, N., Ed.;
Springer: Berlin, 2001; Vol. 219, pp 131–209.
26. Hartwig, J. F. In Modern Arene Chemistry; Astruc, C., Ed.; Wiley-VCH: Weinheim,
2002; pp 107–168.
27. Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am.
Chem. Soc. 2003, 125, 6653.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Sokoloff, L. Dev. Neurosci. 1993, 15, 194.
2. Gambhir, S. S. Nat. Rev. Cancer 2002, 2, 683.
3. Sokoloff, L.; Reivich, M.; Kennedy, C.; Des Rosiers, M. H.; Patlak, C. S.; Pettigrew,
K. D.; Sakurada, O.; Shinohara, M. Journal. Neurochem. 1977, 28, 897.
4. Schmidt, K. C.; Lucignani, G.; Sokoloff, L. Journal. Nucl. Med. 1996, 37, 394.
5. Yamada, K.; Saito, M.; Matsuoka, H.; Inagaki, N. Nat. Protoc. 2007, 2, 753.
6. Yoshioka, K.; Takahashi, H.; Homma, T.; Saito, M.; Oh, K.-B.; Nemoto, Y.;
Matsuoka, H. Biochim. Biophys. Acta 1996, 1289, 5.
7. Yamada, K.; Nakata, M.; Horimoto, N.; Saito, M.; Matsuoka, H.; Inagaki, N. J. Biol.
Chem. 2000, 275, 22278.
8. Bernardinelli, Y.; Magistretti, P. J.; Chatton, J.-Y. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 14937.
9. Blomstrand, F.; Giaume, C. J. Neurosci. Res. 2006, 83, 996.
10. Rouach, N.; Koulakoff, A.; Abudara, V.; Willeecke, K.; Giaume, C. Science 2008,
322, 1551.
11. Gandhi, G. K.; Cruz, N. F.; Ball, K. K.; Theus, S. A.; Dienel, G. A. J. Neurochem.
2009, 110, 857.
28. Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
13978.
29. Singer, R. A.; Caron, S.; McDermott, R. E.; Arpin, P.; Do, N. M. Synthesis 2003,
1727.
30. Singer, R. A.; Dore, M.; Sieser, J. E.; Berliner, M. A. Tetrahedron Lett. 2006, 47,
3727.
12. Yamamoto, T.; Nishiuchi, Y.; Teshima, T.; Matsuoka, H.; Yamada, K. Tetrahedron
Lett. 2008, 49, 6876.
31. Jansson, K.; Frejd, T.; Kihlberg, J.; Magnusson, G. Tetrahedron Lett. 1988, 29, 361.
32. Schlessinger, R. H.; Poss, M. A.; Richardson, S. J. Am. Chem. Soc. 1986, 108, 3112.
33. Jansson, K.; Noori, G.; Magnusson, G. J. Org. Chem. 1990, 55, 3181.
34. Data of compound 15: 1H NMR (400 MHz, CDCl3): d = 0.00 (s, 9H, –CH2–CH2–
TMS), 0.87–0.92 (m, 2H, –CH2–CH2–TMS), 2.82 (br s, 1H, OH), 3.56–3.62 (m, 2H,
–CH2–CH2–TMS, 5-H), 3.66–4.76 (m, 2H, 4-H, 2-H), 3.90–4.05 (m, 2H, –CH2–
CH2–TMS, 6-H), 4.48 (dd, 1H, J = 5.03, 10.5 Hz, 60-H), 4.55 (d, 1H, J = 7.78 Hz, 1-
H), 4.95 (d, 1H, J = 7.78 Hz, NH), 5.66 (s, 1H, Ph-CH), 6.66 (d, 1H, J = 7.32 Hz,
Aromatic), 7.15 (d, 1H, J = 8.69 Hz, Aromatic), 7.30–7.34 (m, 1H, Aromatic),
7.45–7.49 (m, 3H, Aromatic), 7.57–7.60 (m, 2H, Aromatic); 13C NMR (100 MHz,
CDCl3): d = ꢁ1.57, 18.11, 60.52, 65.97, 68.09, 68.62, 72.55, 81.10, 101.87,
102.70, 103.54, 104,09, 126.43, 128.42, 129.39, 136.23, 136.98, 145.04, 149.81.;
MS (ESI) m/z calcd for C24H31N3O6Si [M + H]+ 486.2, found 486.1.
13. Yamada, K.; Matsuoka, H.; Teshima, T.; Yamamoto, T. PCT/JP2009/064053 (WO
2010/016587 A1).
14. LeFevre, P. G. Pharmacol. Rev. 1961, 13, 39.
15. Haddad, G. G.; Jiang, C. Prog. Neurobiol. 1993, 40, 277.
16. Etxeberria, E.; Gonzalez, P.; Tomlinson, P.; Pozueta-Romero, J. J. Exp. Botany
2005, 56, 1905.
17. Since Texas Red sulfonyl chloride consists of a para and an ortho isomer, the
conjugated product is ultimately an isomeric mixture of 2-TRG (3a) (para-
isomer) and 2-TRG (3b) (ortho-isomer). 2-TRG (3) was purified by reverse
phase HPLC on C18 column and eluted as two isomer peaks at 18.9 min (high
polar fraction) and 20.1 min (less polar fraction). Data of high-polar fraction:
1H NMR (400 MHz, CD3OD): d = 1.86 and 2.01 [m, 8H, H200, H600, H1200and H1600
(a
/b) ], 2.60-3.72 [m, 21H, H3, H4, H5, H6a, H6b, H100, H300, H500, H700, H1100,
35. Data of 2-BDG (5): 1H NMR (400 MHz, D2O): (
a isomer) d = 3.40–3.84 (m, 6H,
H1300, H1500 and H1700
(a/b) ], 4.35 [d, 0.3H, J = 8.5 Hz, H1 (b)], 6.55 and 6.73
2-H, 3-H, 4-H, 5-H, 6-H, 60-H), 5.30 (d, 1H, J = 2.75 Hz, 1-H), 6.34–6.37 (m, 1H,
Aromatic), 6.92–6.98 (m, 1H, Aromatic), 7.22–7.26 (m, 1H, Aromatic): (b
isomer) d = 3.40–3.84 (m, 6H, 2-H, 3-H, 4-H, 5-H, 6-H, 60-H), 4.65–4.73 (m, 1H,
1-H), 6.34–6.37 (m, 1H, Aromatic), 6.92–6.98 (m, 1H, Aromatic), 7.22–7.26 (m,
1H, Aromatic), MS (ESI) m/z calcd for C12H15N3O6 [M+H]+ 298.1, found, 298.1.
[s ꢀ 2, 0.7H ꢀ 2, H800 and H1000
(a
)], 6.68 and 6.84 [s ꢀ 2, 0.3H ꢀ 2, H800 and
H1000 )], 719 [d, 0.3H, J = 8.0 Hz, H60 of Ph (b)], 7.24 [d, 0.7H, J = 8.0 Hz, H60 of
(a
Ph (
and 8.0 Hz, H50 of Ph (
J = 1.7 Hz, H30 of Ph (
a
)], 7.98 [dd, 0.3H, J = 1.7 and 8.0 Hz, H50 of Ph (b)], 8.02 [dd, 0.7H, J = 1.7
)], 8.49 [d, 0.3H, J = 1.7 Hz, H30 of Ph (b)], 8.57 [d, 0.7H,
)]; MS (ESI) m/z calcd for C37H42N3O11S2 [M+H]+ 768.2,
a
a