ChemComm
Communication
reacts with allyl bromide to give an allyl substituted four-
coordinate boron derivative with a similar yield (36%).11 The
analogous reactivity unambiguously proves the nucleophilic
character at the boron centre of dianion 1.
The four potassium salts K3, K4, K5 and K6 were characterized
by multi-NMR and vibrational spectroscopy and single crystal
X-ray diffraction. Molecular structures of the four anions, which
show the almost tetrahedral arrangement at the boron atoms,
are depicted in Fig. 3 and experimental details on the crystal
structure analyses are given in the ESI.†
New and convenient syntheses for the potassium salt of the
unusual boron-centred nucleophile B(CN)3 (1)10 have been
2À
developed via reaction of the readily available K[BF(CN)3] (K2)16b
with potassium. K21 was found to be a valuable starting material
for the preparation of tricyanoborates of the type K[RB(CN)3]
(R = H (K3), Et (K4), CH2QCHCH2 (K5), C6F5 (K6)). Further detailed
studies on the chemistry of salts of dianion 1 with selected
compounds are in progress.
Scheme 3 Reactions of K21ÁKF with selected electrophiles.
Notes and references
1 Y. Segawa, M. Yamashita and K. Nozaki, Science, 2006, 314, 113–115.
2 (a) L. Weber, Eur. J. Inorg. Chem., 2012, 5595–5609; (b) M. Yamashita,
Bull. Chem. Soc. Jpn., 2011, 84, 983–999; (c) N. Dettenrieder, Y. Aramaki,
¨
B. M. Wolf, C. Maichle-Mossmer, X. Zhao, M. Yamashita, K. Nozaki and
R. Anwander, Angew. Chem., 2014, 126, 6373–6377 (Angew. Chem.,
Int. Ed., 2014, 53, 6259–6262); (d) A. V. Protchenko, D. Dange, J. R.
Harmer, C. Y. Tang, A. D. Schwarz, M. J. Kelly, N. Phillips, R. Tirfoin,
K. H. Birjkumar, C. Jones, N. Kalsoyannis, P. Mountford and S. Aldridge,
Nat. Chem., 2014, 6, 315–319; (e) H. Hayashi, Y. Segawa, M. Yamashita
and K. Nozaki, Chem. Commun., 2011, 47, 5888–5890; ( f ) Y. Okuno,
M. Yamashita and K. Nozaki, Angew. Chem., 2011, 123, 950–953
(Angew. Chem., Int. Ed., 2011, 50, 920–923); (g) K. Nozaki, Y. Aramaki,
ˆ
M. Yamashita, S.-H. Ueng, M. Malacria, E. Lacote and D. P. Curran,
J. Am. Chem. Soc., 2010, 132, 11449–11451; (h) Y. Segawa, Y. Suzuki,
M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2008, 130, 16069–16079;
(i) M. Yamashita, Y. Suzuki, Y. Segawa and K. Nozaki, J. Am. Chem. Soc.,
2007, 129, 9570–9571; ( j) Y. Segawa, M. Yamashita and K. Nozaki,
Angew. Chem., 2007, 119, 6830–6833 (Angew. Chem., Int. Ed., 2007, 46,
6710–6713).
Fig. 3 The anions [BH(CN)3]À (3), [EtB(CN)3]À (4), [CH2QCHCH2B(CN)3]À
(5) and [C6F5B(CN)3]À (6) in the crystals of their K+ salts [ellipsoids are
drawn at the 50% probability level except for H atoms, which are depicted
with arbitrary radii]. Selected bond lengths [Å] and angles [1] of 3–6 (range
of bond lengths and angles where applicable); 3: B–CN 1.588(2)–1.592(2),
CRN 1.1411(15)–1.1431(15), B–H 1.107(13), B–CRN 176.87(12)–177.00(12),
NC–B–CN 109.35(9)–110.26(9). 4: B–CN 1.591(5)–1.610(5), CRN 1.135(4)–
1.145(4), B–CH2 1.609(5)–1.623(5), CH2–CH3 1.521(5)–1.528(5), B–CRN
177.9(3)–179.1(3), NC–B–CN 107.0(3)–108.3(3). 5: B–CN 1.600(2)–1.607(3),
CRN 1.143(2)–1.144(2), B–CH2 1.630(2), CH2–CHCH2 1.593(2), CHQCH2
1.315(3), B–CRN 175.50(12)–179.12(14), NC–B–CN 106.61(10)–109.80(10).
6: B–CN 1.600(3)–1.608(3), CRN 1.141(2)–1.147(2), B–Ci 1.626(2), B–CRN
174.8(2)–178.7(2), NC–B–CN 105.67(14)–107.15(15).
´
´
´
3 (a) J. Cid, H. Gulyas, J. J. Carbo and E. Fernandez, Chem. Soc. Rev.,
2012, 41, 3558–3570; (b) L. Dang, Z. Lin and T. B. Marder, Chem.
Commun., 2009, 3987–3995.
4 (a) H. Braunschweig, M. Burzler, R. D. Dewhurst and K. Radacki, Angew.
Chem., 2008, 120, 5732–5735 (Angew. Chem., Int. Ed., 2008, 47, 5650–5653);
(b) H. Braunschweig, P. Brenner, R. D. Dewhurst, M. Kaupp, R. Mu¨ller
¨
and S. Ostreicher, Angew. Chem., 2009, 121, 9916–9919 (Angew. Chem.,
Int. Ed., 2009, 48, 9735–9738); (c) H. Braunschweig, A. Damme, R. D.
¨
Dewhurst, T. Kramer, S. Ostreicher, K. Radacki and A. Vargas, J. Am.
Chem. Soc., 2013, 135, 2313–2320; (d) R. Bertermann, H. Braunschweig,
W. C. Ewing, T. Kramer, A. K. Phukan, A. Vargas and C. Werner, Chem.
Commun., 2014, 50, 5729–5732.
5 H. Braunschweig, C.-W. Chiu, K. Radacki and T. Kupfer, Angew.
Chem., 2010, 122, 2085–2088 (Angew. Chem., Int. Ed., 2010, 49,
2041–2044).
6 H. Braunschweig, C.-W. Chiu, T. Kupfer and K. Radacki, Inorg.
Chem., 2011, 50, 4247–4249.
depicted in Scheme 3 are most easily performed as a two-step
one pot procedure. In the first step the tricyanofluoroborate K2
is converted and after removal of the solvent the K21ÁKF is
suspended in THF and the respective electrophile is added.
However, similar results have been obtained with K21ÁKF that was
isolated and stored in a glove box in an inert atmosphere. Related
transformations of boron-centred nucleophiles with electrophiles
have been described, e.g. the carbene-stabilized boryl anion NHC–
¨
7 R. Bertermann, H. Braunschweig, R. D. Dewhurst, C. Horl, T. Kramer
and I. Krummenacher, Angew. Chem., 2014, 126, 5557–5561
(Angew. Chem., Int. Ed., 2014, 53, 5453–5457).
8 R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking and G. Bertrand,
Science, 2011, 333, 610–613.
9 D. A. Ruiz, G. Ung, M. Melaimi and G. Bertrand, Angew. Chem., 2013,
125, 7739–7742 (Angew. Chem., Int. Ed., 2013, 52, 7590–7592).
10 (a) E. Bernhardt, V. Bernhardt-Pitchougina, H. Willner and
N. V. Ignatiev, Angew. Chem., 2011, 123, 12291–12294 (Angew. Chem.,
Int. Ed., 2011, 50, 12085–12088); (b) N. Ignatyev, M. Schulte,
À
BH2 (NHC = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene)
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.