Table 1 Pseudocontact shifts for 6 in the presence of Tb3+ ions
(2 : 1 molar ratio) at 600 MHz
and C. Griesinger, J. Biomol. NMR, 2006, 34, 101–115;
(e) T. Zhuang, H. S. Lee, B. Imperiali and J. H. Prestegard, Protein
Sci., 2008, 17, 1220–1231.
Proton
PCS/ppm
3 (a) G. Otting, J. Biomol. NMR, 2008, 42, 1–9; (b) J. A. Peters,
J. Huskens and D. J. Raber, Prog. Nucl. Magn. Reson. Spectrosc.,
1996, 28, 283–350; (c) I. Bertini, C. Luchinat and G. Parigi, Prog.
Nucl. Magn. Reson. Spectrosc., 2002, 40, 249–273.
4 (a) I. Bertini, C. Luchinat, G. Parigi and R. Pierattelli, Chem-
BioChem, 2005, 6, 1536–1549; (b) I. Bertini, C. Luchinat and
G. Parigi, Concepts Magn. Reson., 2002, 14, 259–286;
(c) M. John, A. Y. Park, G. Pintacuda, N. E. Dixon and
G. Otting, J. Am. Chem. Soc., 2005, 127, 17190–17191;
(d) G. Otting, Annu. Rev. Biophys., 2010, 39, 387–405;
H10
H15
H1
H10
0.73
0.64
0.22
ꢀ0.14
ꢀ0.14
ꢀ0.17
ꢀ0.14
0.04
ꢀ0.12
ꢀ0.05
ꢀ0.01
ꢀ0.16
ꢀ0.14
ꢀ0.15
ꢀ0.14
0.15
H60a
H60b
H6a
H3
H20
(e) G. Pintacuda, K. Hohenthanner, G. Otting and N. Muller,
¨
H4
H5
J. Biomol. NMR, 2003, 27, 115–132; (f) L. Lee and B. D. Sykes,
Biochemistry, 1983, 22, 4366–4373.
5 A. Leonov, B. Voigt, F. Rodriguez-Castaneda, P. Sakhaii and
C. Griesinger, Chem.–Eur. J., 2005, 11, 3342–3348, and references
cited therein.
H50
H30
H40
CH3 20
CH3 2
6 Leading references: (a) D. Haussinger, J. Huang and S. Grzesiek,
¨
J. Am. Chem. Soc., 2009, 131, 14761–14767; (b) M. Prudencio,
J. Rohovec, J. A. Peters, E. Tocheva, M. J. Boulanger, M. E. P.
Murphy, H. J. Hupkes, W. Kosters, A. Impagliazzo and M.
Ubbink, Chem.–Eur. J., 2004, 10, 3252–3260; (c) P. H. Keizers,
J. F. Desreux, M. Overhand and M. Ubbink, J. Am. Chem. Soc.,
2007, 129, 9292–9293; (d) T. Ikegami, L. Verdier, P. Sakhaii,
S. Grimme, B. Pescatore, K. Saxena, K. M. Fiebig and
C. Griesinger, J. Biomol. NMR, 2004, 29, 339–349;
(e) V. Gaponenko, A. S. Altieri, J. Li and R. A. Byrd, J. Biomol.
NMR, 2002, 24, 143–148.
the rings close to the metal (aromatic rings and protons of the
1-b-amino-N-acetylglucosamine unit). In contrast, the protons
of the O-linked acetylglucosamine (with primes) showed
negative PCS. This behaviour is expected due to the shape
of the terbium magnetic susceptibility tensor. Apart from the
mentioned significant PRE and PCS, variations of RDCs were
also observed, which are currently being monitored for a
variety of metals.
7 (a) H.-J. Gabius, H.-C. Siebert, S. Andre, J. Jimenez-Barbero and
H. Rudiger, ChemBioChem, 2004, 5, 740–764; (b) T. K. Dam and
C. F. Brewer, Chem. Rev., 2002, 102, 387–430; (c) H.-J. Gabius,
The synthesis of a sugar molecule containing a rigid
lanthanide binding tag has been achieved. A linker with a
fixed distance and orientation between the metal and the
carbohydrate unit has been employed that should provide
additional parameters for structural, conformational and
molecular recognition studies. PCS and PRE have been
observed, providing structural information for the different
signals. The linker protons are the ones whose signals
disappear from the spectra due to the fast relaxation of the
metal in the paramagnetic complexes. In addition, PCS could
be measured for all the carbohydrate signals. Therefore, this
linker and structural variations thereof could be used for the
study of larger carbohydrates and their interactions with
proteins. Further studies on this topic are currently underway.
S. Andre, H. Kaltner and H.-C. Siebert, Biochim. Biophys. Acta,
´
2002, 1572, 165–177; (d) C. R. Bertozzi and L. L. Kiessling,
Science, 2001, 291, 2357–2364.
8 (a) The Sugar Code: Fundamentals of Glycosciences, ed.
H.-J. Gabius, Wiley VCH, Weinheim, 2009; (b) B. Ernst and
J. L. Magnani, Nat. Rev., 2009, 8, 661–677.
9 (a) J. Jimenez-Barbero and T. Peters, NMR Spectroscopy of
´
Glycoconjugates, Wiley VC, Weinheim, 2002; (b) W. A. Bubb,
NMR Spectroscopy in the Study of Carbohydrates: Characterizing
the Structural Complexity. Concepts Magn. Reson., Part A, 2003,
19(1), 1–19.
10 S. Yamamoto, T. Yamaguchi, M. Erdelyi, C. Griesinger, K. Kato,
EUROMAR 2010, Florence. Poster-268.
11 (a) V. Gaponenko, S. P. Sarma, A. S. Altieri, D. A. Horita,
J. Li and R. A. Byrd, J. Biomol. NMR, 2004, 28, 205–212;
(b) K. Tu and M. Gochin, J. Am. Chem. Soc., 1999, 121,
9276–9285; (c) M. John, G. Pintacuda, A. Y. Park, N. E. Dixon
and G. Otting, J. Am. Chem. Soc., 2006, 128, 12910–12916.
12 For the synthesis of heptaacetylated 1-b-aminochitobiose see:
(a) M. S. Spinola and R. W. Jeanloz, J. Biol. Chem., 1970, 245,
4158–4162; For deacetylation see: (b) M. Wagner, S. Dziadek and
H. Kunz, Chem.–Eur. J., 2003, 9, 6018–6030.
Notes and references
1 G. Pintacuda, M. John, X. Su and G. Otting, Acc. Chem. Res.,
2007, 40, 206–212.
2 For reviews, see: (a) G. Bouvignies, P. R. L. Markwick and
M. Blackledge, ChemPhysChem, 2007, 8, 1901–1909;
(b) J. R. Tolman and K. Ruan, Chem. Rev., 2006, 106,
1720–1736; (c) A. Bax and A. Grishaev, Curr. Opin. Struct. Biol.,
2005, 15, 563–570; (d) N. A. Lakomek, T. Carlomagno, S. Becker
13 V. Bhalla, R. Tejpala, M. Kumara, R. K. Puria and
R. K. Mahajana, Tetrahedron Lett., 2009, 50, 2649–2652.
14 S. Kotha, K. Lahiri and D. Kasinath, Tetrahedron, 2002, 58,
9633–9695.
15 S. L. N. Rao, Biochemistry, 1975, 14, 5218–5221.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7179–7181 7181