3632
L. Fuentes et al. / Tetrahedron Letters 52 (2011) 3630–3632
Supplementary data
Bu3SnH
AIBN
Toluene
80 °C
N
R
Ph
N
R
Ph
N
R
Br
+
Supplementary data associated with this article can be found, in
O
O
O
Ph
Chiral amide
Reduced
product
Rearranged
product
References and notes
Precursor
6, R = CH2CH3
Rearrenged (%)a
11 (25)
Reduced (%)a
12 (52)
1. (a) Porter, N. A.; Giese, B.; Curran, D. P. Acc. Chem. Res. 1991, 24, 296–304; (b)
Curran, D. P.; Porter, N. A.; Giese, B. Stereochemisty of Radical Reactions:
Concepts, Guidelines, and Synthetic Applications; VCH: Weinheim, 1995.
2. (a) Musa, O. M.; Choi, S.-Y.; Horner, J. H.; Newcomb, M. J. Org. Chem. 1998, 63,
786–793; (b) Musa, O. M.; Horner, J. H.; Newcomb, M. J. Org. Chem. 1999, 64,
1022–1025.
3. (a) Curran, D. P.; Guthrie, D. B.; Geib, S. J. J. Am. Chem. Soc. 2008, 130, 8437–
8445; (b) Guthrie, D. B.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2009, 131,
15492–15500; (c) Guthrie, D. B.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2011,
133, 115–122.
7, R = CH2-1,3-dioxolane
8, R = CO2Et
13 (22)
14 (55)
15 (48)
16 (31)
9, R = CH2COH
complex mixture of side-products
a) Yields after purification
4. (a) Sato, T.; Nakamura, N.; Ikeda, K.; Okada, M.; Ishibashi, H.; Ikeda, M. J. Chem.
Soc., Perkin Trans. 1 1992, 2399–2407; (b) Sato, T.; Chono, N.; Ishibashi, H.;
Ikeda, M. J. Chem. Soc., Perkin Trans. 1 1995, 1115–1120; (c) Ikeda, M.; Ohtani,
S.; Okada, M.; Minakuchi, E.; Sato, T.; Ishibashi, H. Heterocycles 1998, 47, 181–
186; (d) Ikeda, M.; Ohtani, S.; Yamamoto, T.; Sato, T.; Ishibashi, H. J. Chem. Soc.,
Perkin Trans. 1 1998, 1763–1768; (e) Ishibashi, H.; Matsukida, H.; Toyao, A.;
Tamura, O.; Takeda, Y. Synlett 2000, 1497–1499; (f) Ishibashi, H.; Kodama, K.;
Higuchi, M.; Muraoka, O.; Tanabe, G.; Takeda, Y. Tetrahedron 2001, 57, 7629–
7637.
5. (a) Bellesia, F.; Danieli, C.; De Buyck, L.; Galeazzi, R.; Ghelfi, F.; Mucci, A.; Orena,
M.; Pagnoni, U. M.; Parsons, A. F.; Roncaglia, F. Tetrahedron 2006, 62, 746–757;
(b) Cardillo, B.; Galeazzi, R.; Mobbili, G.; Orena, M.; Rossetti, M. Heterocycles
1994, 38, 2663–2676; (c) Ishibashi, H.; Fuke, Y.; Yamashita, T.; Ikeda, M.
Tetrahedron: Asymmetry 1996, 7, 2531–2538; (c) Saito, M.; Matsuo, J.-I.;
Ishibashi, H. Tetrahedron 2007, 63, 4863–4865.
Scheme 3. Rearranged products versus reduction products of chiral amides 6–9.
ratio of rotamers remains consistent at the reaction temperature
(80 °C). Therefore, the proposal regarding the relationship between
the rotamer ratio and products ratio seems to be correct. The
VTNMR experiments allowed the determination of the C–N rota-
tion barriers for 5 and 8, wherein 15.8 kcal/mol was determined
for 5 and 17.1 kcal/mol for 8.11 Although these numbers fall in
the range for typical tertiary amides,12 the energy difference of
1.3 kcal/mol between 5 and 8 might reflect the contribution of an
additional C–HꢀꢀꢀO hydrogen bond interaction.
6. Rodríguez, V.; Sánchez, M.; Quintero, L.; Sartillo-Piscil, F. Tetrahedron 2004, 60,
10809–10815.
7. Rodríguez, V.; Quintero, L.; Sartillo-Piscil, F. Tetrahedron Lett. 2007, 48, 4305–
4308.
8. (a) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441–449; (b) Steiner, T. Chem.
Commun. 1997, 727–734.
In summary, the results presented here provide experimental
evidence of the existence of an unusual C–HꢀꢀꢀO hydrogen bond
interaction in the chiral allylic amide 5 (and others), showing that
this interaction is strong enough to overcome the Pauli repulsion
9. Massimi, M. Pauli’s Exclusion Principle: The Origin and Validation of a Scientific
Principle; Cambridge University Press: Cambridge, U.K., 2005; (b) Jakobsche, C.
E.; Choudhary, A.; Miller, S. J.; Raines, R. T. J. Am. Chem. Soc. 2010, 132, 6651–
6653; (c) Hosoya, M.; Otani, Y.; Kawahata, M.; Yamaguichi, K.; Ohwada, T. J. Am.
Chem. Soc. 2010, 132, 14780–14789.
between n orbital and the C–H
r bonding orbital (1,3-allylic strain)
and therefore, favors the 1,4-phenyl radical migration. It is impor-
tant to mention that, although there are various reports describing
1,4-aryl migration reactions in better yields,13 this report repre-
sents the first example where phenyl-migration product is favored
by a weak and unusual hydrogen bonding interaction. Further
experimental and theoretical studies are currently underway.
10. Juaristi, E.; León-Romo, J. L.; Reyes, A.; Escalante, J. Tetrahedron: Asymmetry
1999, 10, 2441–2495.
11. The rate constants k for the present dynamic process were calculated at the
coalescence temperature (Tc) employing the Gutowsky-Holm equation
(kc = pDt
/2ꢁ1/2). Assuming the transmission coefficient to be unity, the free
energies of activation (D
G–) were calculated according to the Eyring equation
G– = RTc[ln Tcꢁln kc + 23.76]); See reference: Modarresi-Alam, A. R.; Najafi,
Acknowledgments
(
D
P.; Rostamizadeh, M.; Keykha, H.; Bijanzadeh, H.-R.; Kleinpeter, E. J. Org. Chem.
2007, 72, 2208–2211.
We thank VIEP-BUAP for financial support. L.F. Thanks CONA-
CyT (grant: 294700513) for graduate scholarship. We also thank
Dr. Isabel Chávez Uribe (I.Q. UNAM) for VTNMR studies and Dr. Luis
Hernández-Garcia (University of Iowa) for helpful discussions.
12. Wunderlich, M. D.; Leung, L. K.; Sandberg, J. A.; Meyer, K. D.; Yoder, C. H. J. Am.
Chem. Soc. 1978, 100, 1500–1503.
13. Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649–9667. And references cited
herein.