D. Bhuniya et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3596–3602
3601
General and typical synthetic routes employed to access the
GPR91 antagonists are outlined in Scheme 1 and Scheme 2. 1,8-
Naphthyridine heterocycle was constructed having appropriate
2- substitution via Friedländer heterocyclization15 between 2-ami-
no-3-formylpyridine 816 and appropriately chosen methylketoest-
er 9. Subsequent ester hydrolysis provided us the carboxylic acid
10 as a common building block for synthesis of both the amide
(1-5) as well as amide bio-isosteric compounds (6-7).
tion of key compounds; additional information on animal studies)
associated with this article can be found, in the online version, at
References and notes
1. He, W.; Miao, F. J.-P.; Lin, D. C.-H.; Schwandner, R. T.; Wang, Z.; Gao, J.; Chen, J.-
L.; Tian, H.; Ling, L. Nature 2004, 429, 188.
2. Gonzalez, N. S.; Communi, D.; Hannedouche, S.; Boeynaems, J.-M. Purinergic
Signalling 2004, 1, 17.
3. Regard, J. B.; Sato, I. T.; Coughlin, S. R. Cell 2008, 135, 561.
4. Hakak, Y.; Lehmann-Bruinsma, K.; Phillips, S.; Le, T.; Liaw, C.; Connolly, D. T.;
Behan, D. P. J. Leukoc. Biol. 2009, 85, 837.
The scaffold 10 was reacted with appropriately chosen amine
11 using EDCI/HOBt promoted amide coupling condition to obtain
the antagonists 1–5 (Scheme 1).17–19
The acid intermediates 10a–b, synthesized in Scheme 1, were
used for the synthesis of amide bio-isosters 6 and 7 shown in
Scheme 2. Starting from 10a–b, and reacting with acylhydrazine
12, another general building block 13 was obtained by treatment
with the amide coupling reagent. Appropriate diacylhydrazine
scaffold 13 was then converted to oxadiazole compounds 6a–c
and 7a–h by intramolecular cyclization followed by dehydration
in presence of POCl3.20 The thiadiazole analog of 6a, that is 6d,
was obtained from the intermediate 13 by treatment with Lawes-
son’s reagent. The corresponding triazole analog 6e was obtained
from the intermediate 10a in four steps: via formation of the cor-
responding N-protected amide 14 followed by thioamide 15, and
subsequently by Hg(OAc)2 induced condensation of the intermedi-
ate 15 with appropriate acylhydrazine 12, followed by deprotec-
tion of 2,4-dimethoxy benzyl group.21–23
5. Sapieha, P.; Sirinyan, M.; Hamel, D.; Zaniolo, K.; Joyal, J.-S.; Cho, J.-H.; Honoré,
J.-C.; Kermorvant-Duchemin, E.; Varma, D. R.; Tremblay, S.; Leduc, M.;
Rihakova, L.; Hardy, P.; Klein, W. H.; Mu, X.; Mamer, O.; Lachapelle, P.; Polo,
A. D.; Beauséjour, C.; Andelfinger, G.; Mitchell, G.; Sennlaub, F.; Chemtob, S.
Nature Med. 2008, 14, 1067.
6. Hebert, S. C. Nature 2004, 429, 143.
7. Sadagopan, N.; Li, W.; Roberds, S. L.; Major, T.; Preston, G. M.; Yu, Y.; Tones, M.
A. Am. J. Hypertens. 2007, 20, 1209.
8. (a) Toma, I.; Kang, J. J.; Sipos, A.; Vargas, S.; Bansal, E.; Hanner, F.; Meer, E.; Peti-
Peterdi, J. J. Clin. Invest. 2008, 118, 2526; (b) Peti-Peterdi, J.; Kang, J. J.; Toma, I.
Nephrol. Dial. Transplant. 2008, 23, 3047–3049; (c) Vargas, S. L.; Toma, I.; Kang,
J. J.; Meer, E. J.; Peti-Peterdi, J. J. Am. Soc. Nephrol. 2009, 20, 1002; (d) Peti-
Peterdi, J. Kidney Int. 2010, 78, 1214.
9. Correa, P. R. A. V.; Kruglov, E. A.; Thompson, M.; Leite, M. F.; Dranoff, J. A.;
Nathanson, M. H. J. Hepatol. 2007, 47, 262.
10. Rubic, T.; Lametschwandtner, G.; Jost, S.; Hinteregger, S.; Kund, J.; Carballido-
Perrig, N.; Schwärzler, C.; Junt, T.; Voshol, H.; Meingassner, J. G.; Mao, X.;
Werner, G.; Rot, A.; Carballido, J. M. Nature Immunol. 2008, 9, 1261.
11. Kermorvant-Duchemin, E.; Sapieha, P.; Sirinyan, M.; Beauchamp, M.; Checchin,
D.; Hardy, P.; Sennlaub, F.; Lachapelle, P.; Chemtob, S. Doc. Opthalmol. 2010,
120, 51.
In conclusion, starting from
a near micromolar active
high-throughput screening hit 1, systematic structure-activity
relationship study led to the identification of several potent and
selective hGPR91 antagonists. Two independent series were devel-
oped, namely amides 2–5, and amide-bio-isosteric analogs 6–7.
Initial hurdle of poor oral bioavailability, observed in series 2–4
and 6, was subsequently overcome in series 5 and 7 respectively
(Table 1). A new pharmacodynamic (PD) assay was set up in anes-
thetized Wistar rats based on succinate induced increase in mean
arterial pressure. Employing two representative tool compounds
2c and 4c, in the PD study, GPR91 target engagement was demon-
strated in vivo (Fig. 4). To the best of our knowledge, this is the first
report of the discovery and pharmacodynamic characterization of
GPR91 antagonists. The compounds presented here (e.g., 5g, 7e)
may serve as pharmacological tools for establishing animal
proof-of-concept of GPR91 modulation in several potential thera-
peutic indications such as: renal hypertension, diabetic nephropa-
thy, autoimmune disease, retinal angiogenesis, and diabetic
retinopathy. In addition, we hope this communication will serve
as a catalyst for further studies leading to better understanding
of the target and eventually to a new line of therapy. A complete
medicinal chemistry and pharmacological validation of GPR91 will
be disclosed elsewhere in the form of full paper.
12. We are not aware of any prior art literature of GPR91 antagonist. However,
there are patent applications claiming method of screening of drug candidates
modulating GPR91 and the method of treatment to various therapeutic
indications. Please see, (a) Li, K.; Wang, S.-W.; Hu, G.; Yao, Z. PCT
international publication no. WO 2005/010152 A2. (b) Golz, S.; Brüggemeier,
U.; Geerts, A.; Summer, H. PCT international publication no. WO 2005/050220
A1. (c) Carballido Herrera, J. M.; Lametschwandtner, G.; Werner, G.; Rot, A. PCT
international publication no. WO 2006/117193 A2. (d) Hakak, Y.; Liu, L.;
Bruinsma, K. PCT international publication no. WO 2009/011885 A1.
13. Supplementary data referred for
a brief description of GPR91 antagonist
screening assay protocol used in HTS as well as for the SAR work presented
here.
14. For literature on BK1R antagonists related to 1, please see: (a) Kuduk, S. D.;
Marco, C. N. D.; Chang, R. K.; Wood, M. R.; Kim, J. J.; Schirripa, K. M.; Murphy, K.
L.; Ransom, R. W.; Tang, C.; Torrent, M.; Ha, S.; Prueksaritanont, T.; Pettibone,
D. J.; Bock, M. G. Bioorg. Med. Chem. Lett. 2006, 16, 2791; (b) Wood, M. R.;
Kuduk, S. D.; Bock, M. G.; Chang, R. K. US Patent application publication no. US
2006/0128765 A1.; (c) Wood, M. R.; Su, D.-S.; Wai, J. M.-C. US Patent
application publication no. US 2006/0173023 A1.; (d) Kuduk, S. D.; Marco, C.
N. D.; Chang, R. K.; Wood, M. R.; Schirripa, K. M.; Kim, J. J.; Wai, J. M.-C.;
DiPardo, R. M.; Murphy, K. L.; Ransom, R. W.; Harrell, C. M.; Reiss, D. R.;
Holahan, M. A.; Cook, J.; Hess, J. F.; Sain, N.; Urban, M. O.; Tang, C.;
Prueksaritanont, T.; Pettibone, D. J.; Bock, M. G. J. Med. Chem. 2007, 50, 272.
15. (a) Meissner, R. S.; Perkins, J. J.; Duong, L. T.; Hartman, G. D.; Hoffman, W. F.;
Huff, J. R.; Ihle, N. C.; Leu, C. –T.; Nagy, R. M.; Naylor-Olsen, A.; Rodan, G. A.;
Rodan, S. B.; Whitman, D. B.; Wesolowski, G. A.; Duggan, M. E. Bioorg. Med.
Chem. Lett. 2002, 12, 25; (b) Dormer, P. G.; Eng, K. K.; Farr, R. N.; Humphrey, G.
R.; McWilliams, J. C.; Reider, P. J.; Sager, J. W.; Volante, R. P. J. Org. Chem. 2003,
68, 467.
16. (a) Turner, J. A. J. Org. Chem. 1983, 48, 3401; (b) Rivera, N. R.; Hsiao, Y.; Cowen, J.
A.; McWilliams, C.; Armstrong, J.; Yasuda, N.; Hughes, D. L. Synth. Commun.
2001, 31, 1573.
Acknowledgments
17. N-[(3’-Methylbiphenyl-4-yl)methyl]-4-([1,8]naphthyridin-2-yl)butyramide,
2c.
Mp: 140–142 °C. 1H NMR (400 MHz, CDCl3): d 2.30 (quint, J = 7 Hz, 2H), 2.39
(t, J = 7 Hz, 2H), 2.41 (s, 3H), 3.14 (t, J = 7 Hz, 2H), 4.48 (d, J = 5.6 Hz, 2H), 6.42
(br t, J = 5.6 Hz, 1H, -NH-), 7.16 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.34–
7.38 (aromatics, 4H), 7.42 (d, J = 8.4 Hz, 1H), 7.46 (dd, J = 8.2, 4.4 Hz, 1H), 7.53
(d, J = 8.4 Hz, 2H), 8.12 (d, J = 8.3 Hz, 1H), 8.17 (dd, J = 8.1 Hz, 2 Hz, 1H), 9.07
(dd, J = 4.4, 2 Hz, 1H). 13C NMR (100 MHz, DMSO-D6): d 21.08, 24.86, 34.86,
37.76, 41.72, 120.90, 121.62, 122.55, 123.64, 126.53 (2C), 127.16, 127.74 (2C),
127.90, 128.75, 137.26, 137.61, 137.97, 138.71, 138.83, 139.90, 153.16, 155.29,
165.47, 171.80. HPLC purity: 99.6%. MS (m/z): 396.0 [M+1] base peak. HRMS
(m/z): Calcd For [M+1]: 396.2075; Found: 396.2094.
Described work was carried out as a part of collaborative pro-
gram between Advinus Therapeutics and Merck Research Labora-
tories. We thank all the members of much larger GPR91 team,
business alliance leaders, and senior management from both the
organizations. We thank Dr. Mahesh Mone for analytical support,
and Dr. Anup Ranade for managing intellectual property. Advinus
publication no. ADV-A-012.
18. N-[(S)-1-(4’-Fluoro-3’-trifluoromethylbiphenyl-4-yl)ethyl]-2-[4-
Supplementary data
([1,8]naphthyridin-2-yl)phenyl]acetamide, 4c. Mp: 198–200 °C. 1H NMR
(400 MHz, DMSO-D6): d 1.42 (d, J = 6.9 Hz, 3H), 3.59 (s, 2H), 4.98 (quintet,
J = 7.1 Hz, 1H), 7.43 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.56–7.65
(aromatics, 2H), 7.69 (d, J = 8.2 Hz, 2H), 7.96 (br d, J = 6 Hz, 1H), 8.00–8.05
(aromatics, 1H), 8.27 (d, J = 8.4 Hz, 3H), 8.48 (dd, J = 8.0, 1.8 Hz, 1H), 8.56 (d,
J = 8.6 Hz, 1H), 8.70 (d, J = 7.9 Hz, 1H), 9.09 (dd, J = 4.0, 1.8 Hz, 1H). 13C NMR
Supplementary data (hGPR91 antagonistic screening assay pro-
tocol; series wise hGPR91 IC50 along with metabolic stability data
of representative compounds (Table S1–S4); spectral characteriza-