Inorganic Chemistry
COMMUNICATION
’ ASSOCIATED CONTENT
S
Supporting Information. Synthesis and characterization
b
of compounds 1, 2a, and 2b, DFT calculations for model com-
pounds 2a0 and 2b0, and an X-ray crystallographic file in CIF format
for the structure determination of compound 2a. This material
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: tren@purdue.edu.
’ ACKNOWLEDGMENT
We gratefully acknowledge financial support from the National
Science Foundation (Grant CHE 1057621) and Purdue University.
’ REFERENCES
(1) Nast, R. Coord. Chem. Rev. 1982, 47, 89. Hagihara, N.; Sonogashira,
K.; Takahashi, S. Adv. Polym. Sci. 1981, 41, 149.
+
+
Figure 4. MO diagram for model compounds 2a0 (left) and 2b0
(2) Paul, F.; Lapinte, C. Coord. Chem. Rev. 1998, 178ꢀ180, 431.
(right) based on R-spin orbitals (MO levels of β spin are shown in Figure
S6 in the Supporting Information). The directions pointing toward the
N atoms of the cyclam ring are designated as the X and Y axes.
Akita, M.; Koike, T. Dalton Trans. 2008, 3523.
(3) Szafert, S.; Gladysz, J. A. Chem. Rev. 2006, 106, 1. Yam, V. W. W.;
Lo,K.K.W.;Wong,K.M.C.J. Organomet. Chem. 1999,578,3.Yam,V.W.-W.
Acc. Chem. Res. 2002, 35, 555. Ren, T. Organometallics 2005, 24, 4854.
(4) Schull, T. L.; Kushmerick, J. G.; Patterson, C. H.; George, C.;
Moore, M. H.; Pollack, S. K.; Shashidhar, R. J. Am. Chem. Soc. 2003,
125, 3202. Blum, A. S.; Ren, T.; Parish, D. A.; Trammell, S. A.; Moore,
M. H.; Kushmerick, J. G.; Xu, G.-L.; Deschamps, J. R.; Pollack, S. K.;
Shashidhar, R. J. Am. Chem. Soc. 2005, 127, 10010. Mahapatro, A. K.;
Ying, J.; Ren, T.; Janes, D. B. Nano Lett. 2008, 8, 2131. Lu, Y.;
Quardokus, R.; Lent, C. S.; Justaud, F.; Lapinte, C.; Kandel, S. A.
J. Am. Chem. Soc. 2010, 132, 13519.
geometries and MOs are given in the Supporting Information
(Figures S4ꢀS6 and Tables S1ꢀS4).
The DFT results of 2a0 and 2b0+ are in agreement with the
+
ligand field theory prediction for a d5 center in a strong field: an
empty eg set as the lowest unoccupied MO (LUMO; dx2ꢀy2) and
LUMO+1 (dz2) and an occupied t2g set as highest occupied MO
(HOMO)ꢀ2, HOMOꢀ1, and singly occupied MO (SOMO).
The loss of orbital degeneracy is caused by both the low
symmetry of the cyclam ligand (C2 only) and the JahnꢀTeller
instability (in both Oh and D4h settings). The two HOMOs,
namely, HOMOꢀ1 and SOMO, consist of the antibonding
combinations of dπ and π(CtC), and the contribution from
the latter is very significant. Similar interactions were noted for
the piano-stool-type iron(III) monoacetylide compounds by
Paul et al.14 The computed SOMOꢀLUMO gaps are qualita-
tively agreeable to the dꢀd transition optical gaps for 2a (470 nm
or 2.64 eV) and 2b (550 nm or 2.25 eV). The SOMO and
(5) Lapinte, C. J. Organomet. Chem. 2008, 693, 793. Akita, M.; Moro-oka,
Y. Bull. Chem. Soc. Jpn. 1995, 68, 420.
(6) Field, L. D.; George, A. V.; Hambley, T. W. Inorg. Chem. 1990,
29, 4565. Field, L. D.; George, A. V.; Hambley, T. W.; Malouf, E. Y.;
Young, D. J. J. Chem. Soc., Chem. Commun. 1990, 931. Field, L. D.;
George, A. V.; Malouf, E. Y.; Slip, I. H.; Hambley, T. W. Organometallics
1991, 10, 3842. Field, L. D.; Turnbull, A. J.; Turner, P. J. Am. Chem. Soc.
2002, 124, 3692. Field, L. D.; Magill, A. M.; Pike, S. R.; Turnbull, A. J.;
Dalgarno, S. J.; Turner, P.; Willis, A. C. Eur. J. Inorg. Chem. 2010, 2406.
(7) Ren, T.; Zou, G.; Alvarez, J. C. Chem. Commun. 2000, 1197.
Wong, K.-T.; Lehn, J.-M.; Peng, S.-M.; Lee, G.-H. Chem. Commun.
2000, 2259. Xu, G.-L.; Zou, G.; Ni, Y.-H.; DeRosa, M. C.; Crutchley,
R. J.; Ren, T. J. Am. Chem. Soc. 2003, 125, 10057. Xu, G.-L.; Crutchley,
R. J.; DeRosa, M. C.; Pan, Q.-J.; Zhang, H.-X.; Wang, X.; Ren, T. J. Am.
Chem. Soc. 2005, 127, 13354. Ying, J.-W.; Liu, I. P.-C.; Xi, B.; Song, Y.;
Campana, C.; Zuo, J.-L.; Ren, T. Angew. Chem., Int. Ed. 2010, 49, 954.
(8) Forrest, W. P.; Cao, Z.; Fanwick, P. E.; Hassell, K. M.; Ren, T.
Organometallics 2011, 30, 2075. Cao, Z.; Ren, T. Organometallics 2011,
30, 245.
(9) Grisenti, D. L.; Thomas, W. W.; Turlington, C. R.; Newsom,
M. D.; Priedemann, C. J.; VanDerveer, D. G.; Wagenknecht, P. S. Inorg.
Chem. 2008, 47, 11452.
(10) Chan, P. K.; Poon, C. K. J. Chem. Soc., Dalton Trans. 1976, 858.
(11) Field, L. D.; George, A. V.; Laschi, F.; Malouf, E. Y.; Zanello, P.
J. Organomet. Chem. 1992, 435, 347.
(12) Figgis, B. N. Introduction to Ligand Fields; Wiley: New York,
1966.
(13) Frisch, M. J.; et al. Gaussian03, revision D.02; Gaussian, Inc.:
Wallingford, CT, 2003.
+
HOMOꢀ1 of 2b0 are of higher energy in comparison to those of
+
2a0 because of stronger antibonding character through the
introduction of phenyl groups. On the other hand, the LUMO
levels of both 2a0 and 2b0+ are approximately the same because
+
of the absence of the contribution from the acetylide ligands. The
reduction of the SOMOꢀLUMO optical gap in compound 2b
should be attributed to destabilization of the occupied dπ
orbital(s). In addition, the pronounced π(CtC) contributions
to both SOMO and HOMOꢀ1 offer the possibility of intensity
“stealing” in dꢀd bands.
In conclusion, we offered the first examples of iron(III)
bis(acetylide) compounds 2a/2b based on a iron cyclam synthon
(1). Strong π interactions between the occupied dπ and
π(CtC) orbitals are evident from both the absorption spectra
and DFT calculations. Further syntheses of type 2 derivative
compounds with donor/acceptor-substituted alkynes, isolation
of their 1eꢀ reduction derivative (FeII), and the photophysical
properties of these unique species are being investigated in our
laboratory.
(14) Paul, F.; Toupet, L.; Thepot, J. Y.; Costuas, K.; Halet, J. F.;
Lapinte, C. Organometallics 2005, 24, 5464.
7366
dx.doi.org/10.1021/ic200836v |Inorg. Chem. 2011, 50, 7364–7366