3554
P. v. Czarnecki et al. / Tetrahedron Letters 52 (2011) 3551–3554
water (150 mL) was added to a mixture of tyramine (15.11 g, 110 mmol,
1.0 equiv) and BOC2O (24.5 mL, 112 mmol, 1.0 equiv) suspended in THF
(460 mL) and vigorously stirred. After 24 h the mixture was diluted with
excess ether and the aqueous was extracted with ether (2 ꢃ 150 mL). The
combined organic layers were sequentially washed with 0.5 M HCl, water and
brine then dried over Na2SO4. Concentration gave a crude yellow oil which was
purified by flash Silica chromatography (cyclohexane /ethyl acetate (3:1),
Rf = 0.3) to give N-t-BOC-tyramine as a white solid (24.07 g, 92%). Anal. Calcd
for C13H19NO3: C 65.8; H 8.1; N 5.9. Found: C 65.6; H 8.0; N 5.7.
peroxide. The reaction rate could be controlled by the nature and
the position of the substituents over more than one order of mag-
nitude. Also pH influenced the cleavage reaction greatly. Further, it
was found that the degradation follows a simple second order
kinetics at the beginning and becomes an autocatalytic reaction
at higher conversion. This has a very intriguing consequence for
the potential use of the AOEs as linkers – the reaction rate is nearly
constant until up to 90% conversion. Thus, a polymer network with
such a linker would be sensitive to H2O2 until it is nearly fully
degraded.
1H NMR (400 MHz, acetone): d = 1.40 (s, t-Butyl), 2.68 (t, 3J5,6 = 7.6, 5-H2), 3.16
3
3
3
3
(td, J6,5 = 7.6, J6,N = 6.5, 6-H2), 5.89 (m, JN,6 = 5.5, N-H1), 6.76 (d, J2,3 = 8.4, 2-
3
H2), 7.04 (d, J3,2 = 8.4, 3-H2, 3’-H2), 8.08 (s, O–H1) ppm.
Generally all AOEs were prepared by
a
modified synthesis of Lathi.30
Exemplarily shown by the synthesis of bis(4-chloro-2-methylphenol) oxalate
(AOE1).
References and notes
4-chloro-2-methylphenol (1.57 g; 11 mmol, 1.0 equiv) was solved in 10 mL of
dry THF at -15 °C under argon was added carefully in portions NaH (0.48 g, 60%
in oil, 12 mmol, 1.1 equiv). After the resultant white suspension was stirred for
30 min, oxalyl chloride (0.82 g, 6.5 mmol, 0.5 equiv) in 10 mL of THF was added
slowly dropwise with the reaction still cooled in an ice acetone bath. The
reaction was then stirred at -15 °C for 2 h. The final mix was poured onto ice,
washed with saturated NH4Cl, brine and water, and then dried over Na2SO4.
Evaporation under reduced pressure gave the crude product, which was
recrystallized from acetone/ethyl acetate twice to give a white powder of AOE1
(1.60 g, 86%). Anal. Calcd for C16H12Cl2O4: C 56.7; H 3.6. Found: C 56.6; H 3.7.
1H NMR (400 MHz, DMSO): d = 2.24 (s, 7-H3, 70-H3), 7.36 (d, 3J6,5 = 8.8, 6-H1, 60-
1. Jeong, B.; Gutowska, A. Trends Biotechnol. 2002, 20, 305–311.
2. Vert, M. J. Mat. Sci. – Mater. Med. 2009, 20, 437–446.
3. Bencherif, S. A.; Sheehan, J. A.; Hollinger, J. O.; Walker, L. M.; Matyjaszewski, K.;
Washburn, N. R. J. Biomed. Mater. Res., Part A 2009, 90A, 142–153.
4. Kramer, R. A.; Brohmer, M. C.; Forkel, N. V.; Bannwarth, W. Eur. J. Org. Chem.
2009, 4273–4283.
5. Rikkou, M. D.; Loizou, E.; Porcar, L.; Butler, P.; Patrickios, C. S. Macromolecules
2009, 42, 9412–9421.
6. Ruckenstein, E.; Zhang, H. M. Macromolecules 1999, 32, 3979–3983.
7. Stubbe, B. G.; Horkay, F.; Amsden, B.; Hennink, W. E.; De Smedt, S. C.;
Demeester, J. Biomacromolecules 2003, 4, 691–695.
8. Heath, W. H.; Palmieri, F.; Adams, J. R.; Long, B. K.; Chute, J.; Holcombe, T. W.;
Zieren, S.; Truitt, M. J.; White, J. L.; Willson, C. G. Macromolecules 2008, 41, 719–
726.
9. Otsuka, H.; Endo, T. Macromolecules 1999, 32, 9059–9061.
10. Themistou, E.; Kanari, A.; Patrickios, C. S. J. Polym. Sci., Part A: Polym. Chem.
2007, 45, 5811–5823.
11. Amir, R. J.; Pessah, N.; Shamis, M.; Shabat, D. Angew. Chem., Int. Ed. 2003, 42,
4494–4499.
12. McGrath, D. V. Mol. Pharm. 2005, 2, 253–263.
13. Grether, U.; Waldmann, H. Chem. Eur. J. 2001, 7, 959–971.
14. Meyer, Y.; Richard, J. A.; Delest, B.; Noack, P.; Renard, P. Y.; Romieu, A. Org.
Biomol. Chem. 2010, 8, 1777–1780.
15. Perry-Feigenbaum, R.; Baran, P. S.; Shabat, D. Org. Biomol. Chem. 2009, 7, 4825–
4828.
16. Seebach, D.; Herrmann, G. F.; Lengweiler, U. D.; Bachmann, B. M.; Amrein, W.
Angew. Chem., Int. Ed. 1996, 35, 2795–2797.
17. de Groot, F. M. H.; Albrecht, C.; Koekkoek, R.; Beusker, P. H.; Scheeren, H. W.
Angew. Chem., Int. Ed. 2003, 42, 4490–4494.
18. Gao, H. F.; Tsarevsky, N. V.; Matyjaszewski, K. Macromolecules 2005, 38, 5995–
6004.
19. Warnecke, A.; Kratz, F. J. Org. Chem. 2008, 73, 1546–1552.
20. Johnson, J. A.; Lewis, D. R.; Az, D. D. D. U.; Finn, M. G.; Koberstein, J. T.; Turro, N.
J. J. Am. Chem. Soc. 2006, 128, 6564–6565.
3
4
4
H1), 7.4 (dd, J5,6 = 8.8, J5,3 = 2.2, 5-H1, 50-H1), 7.50 (d, J3,5 = 1.8, 3-H1, 30-H1)
ppm.
13C NMR (400 MHz, DMSO): d = 15.40, 123.37, 126.94, 130.59, 130.78, 132.07,
147.29, 154.22 ppm.
Preparation of bis(4-chloro-3-methylphenol) oxalate (AOE2). Following the
general procedure it was prepared from 4-chloro-3-methylphenol (5.04 g;
35 mmol, 1.0 equiv), oxalyl chloride (2.24 g, 17 mmol, 0.5 equiv) and NaH
(1.57 g, 60% in oil, 39 mmol, 1.1 equiv), in a similar manner to that described
above. AOE2 (2.65 g) was obtained as white crystals in 46% yield. Anal. Calcd
for C16H12Cl2O4: C 56.7; H 3.6. Found: C 56.6; H 3.7.
3
1H NMR (400 MHz, DMSO): d = 2.37 (s, 7-H3, 70-H3), 7.19 (dd, J6,5 = 8.8,
4
3
4J6,2 = 2.8, 6-H1, 60-H1), 7.32 (d, J2,6 = 2.8, 2-H1, 20-H1), 7.55 (d, J5,6 = 8.8, 5-H1,
50-H1) ppm.
13C NMR (400 MHz, DMSO): d = 19.57, 120.10, 123.44, 129.65, 131.05, 137.06,
148.34, 154.44 ppm.
Preparation of bis(4-bromo-3,5-dimethylphenol) oxalate (AOE3). Following
the general procedure it was prepared from 4-bromo-3,5-dimethylphenol
(5.17 g; 26 mmol, 1.0 equiv), oxalyl chloride (1.63 g, 13 mmol, 0.5 equiv) and
NaH (1.05 g, 60% in oil, 26 mmol), in a similar manner to that described above.
AOE3 (3.14 g) was obtained as white crystals in 53% yield. Anal. Calcd for
C
18H16Br2O4: C 47.4; H 3.5. Found: C 47.6; H 3.7.
1H NMR (400 MHz, DMSO): d = 2.40 (s, 5-H3, 50-H3, 500-H3, 5000-H3), 7.17 (s, 2-H1,
2-H1, 200-H1, 2000-H1) ppm.
13C NMR (400 MHz, DMSO): d = 23.33, 120.62, 124.09, 139.16, 148.30,
154.48 ppm.
21. Delmaestro, R. F. Acta Physiol. Scand. 1980, 153–168.
22. Klinger, M. M.; Rahemtulla, F.; Prince, C. W.; Lucas, L. C.; Lemons, J. E. Crit. Rev.
Oral Bio. Med. 1998, 9, 449–463.
23. Halliwell, B.; Clement, M. V.; Long, L. H. FEBS Lett. 2000, 486, 10–13.
24. Napoli, A.; Boerakker, M. J.; Tirelli, N.; Nolte, R. J. M.; Sommerdijk, N. A. J. M.;
Hubbell, J. A. Langmuir 2004, 20, 3487–3491.
25. Rehor, A.; Hubbell, J. A.; Tirelli, N. Langmuir 2005, 21, 411–417.
26. Rieche, A. Angew. Chem., Int. Ed. 1958, 70, 251–266.
27. Wiberg, K. B. J. Am. Chem. Soc. 1955, 77, 2519–2521.
28. McCapra, F. Methods Enzymol. 2000, 305, 3–47.
29. Rauhut, M. M. Acc. Chem. Res. 1969, 2, 80–87.
30. Lahti, P. M.; Modarelli, D. A.; Rossitto, F. C.; Inceli, A. L.; Ichimura, A. S.; Ivatury,
S. J. Org. Chem. 1996, 61, 1730–1738.
31. Bollyky, L. J.; Whitman, R. H.; Roberts, B. G.; Rauhut, M. M. J. Am. Chem. Soc.
1967, 89, 6523–6526.
Preparation of bis(4-(2-bromoethyl)phenol) oxalate (AOE4). Following the
general procedure it was prepared from 4-(2-bromoethyl)phenol (1.00 g;
5 mmol, 1.0 equiv), oxalyl chloride (0.32 g, 2.5 mmol, 0.5 equiv) and NaH
(0.20 g, 60% in oil, 5 mmol), in a similar manner to that described above. AOE4
(0.68 g) was obtained as white crystals in 60% yield. Anal. Calcd for
C
18H16Br2O4: C 47.4; H 3.5. Found: C 47.7; H 3.9.
1H NMR (400 MHz, DMSO): d = 3.17 (t, 3J5,6 = 7.2, 5-H2, 50-H2), 3.77 (t, 3J6,5 = 7.2,
6-H2, 60-H2), 7.26 (d, 3J2,3 = 8.3, 2-H2, 2’-H2), 7.41 (d, 3J3,2 = 8.3, 3-H2, 3’-H2) ppm.
13C NMR (400 MHz, DMSO): d = 34.35, 37.67, 121.09, 130.08, 137.41, 148.80,
155.02 ppm.
Preparation of bis(N-t-BOC-tyramine) oxalate (AOE5). Following the general
procedure it was prepared from N-t-BOC-tyramine (10.48 g, 44 mmol,
1.0 equiv), oxalyl chloride (2.81 g; 22 mmol, 0.5 equiv) and NaH (1.76 g, 60%
in oil, 44 mmol, 1.0 equiv), in a similar manner to that described above. AOE5
(8.08 g) was obtained as white crystals in 69% yield. Anal. Calcd for
32. Rauhut, M. M.; Bollyky, L. J.; Roberts, B. G.; Loy, M.; Whitman, R. H.; Iannotta, A.
V.; Semsel, A. M.; Clarke, R. A. J. Am. Chem. Soc. 1967, 89, 6515–6522.
33. Koike, R.; Kato, Y.; Motoyoshiya, J.; Nishii, Y.; Aoyama, H. Luminescence 2006,
21, 164–173.
34. Rouhi, M. Chem. Eng. News 1999, 77, 65.
35. Hart, M. E.; Suchland, K. L.; Miyakawa, M.; Bunzow, J. R.; Grandy, D. K.; Scanlan,
T. S. J. Med. Chem. 2006, 49, 1101–1112.
36. Materials. Oxalyl chloride, the phenols (Sigma Aldrich), sodium hydride,
NaHCO3, triethylamine (VWR), BOC2O, and hydrogen peroxide solutions
(30 wt %) (Merck) were used as received. Tetrahydrofuran (THF) was freshly
distilled from sodium–potassium. Acetonitrile was obtained in HPLC-Grade.
Cyclohexane and ethyl acetate has been distilled.
C
28H36N2O8: C 63.6; H 6.9; N 5.3. Found: C 63.4; H 6.8; N 5.2.
3
1H NMR (400 MHz, DMSO): d = 1.36 (s, 2 x t-Butyl), 2.72 (t, J5,6 = 7.0, 5-H2, 5’-
3
3
3
H2), 3.16 (td, J6,5 = 6.5, J6,N = 6.5, 6-H2, 6’-H2), 6.92 (t, JN,6 = 5.5, N-H1, N’-H1),
3
3
7.21 (d, J2,3 = 8.6, 2-H2, 2’-H2), 7.30 (d, J3,2 = 8.5, 3-H2, 3’-H2) ppm.
13C NMR (400 MHz, DMSO): d = 28.28, 34.82, 41.34, 77.53, 121.00, 129.91,
137.95, 148.42, 155.13, 155.55 ppm.
Preparation of bis(eugenol)oxalate (AOE6). Following the general procedure it
was prepared from Eugenol (2.25 g; 14 mmol, 1.0 equiv), oxalyl chloride
(0.89 g, 7 mmol, 0.5 equiv) and NaH (0.56 g, 60% in oil, 14 mmol, 1.0 equiv), in a
similar manner to that described above. AOE6 (1.34 g) was obtained as white
crystals in 70% yield. Anal. Calcd for C22H22O6: C 69.1; H 5.8. Found: C 69.1; H
5.7.
General Methods. 1H NMR and 13C NMR spectra were taken on a Bruker Avance
DRX 400 (400 and 100 MHz respectively). Data reported were calibrated to
internal TMS (0.0 ppm) for all solvents unless otherwise noted and are reported
as follows: chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; q,
quartet; and m, multiplet), coupling constant, and integration. Analysis by
reverse phase HPLC were done with a VWR-Hitachi LaChrom Elite 2000 and a
LiChroCart 150-4,6 column (Merck).
1H NMR (400 MHz, DMSO): d = 3.40 (d, 3J7,8 = 7.0, 7-H2, 70-H2), 3.80 (s, OMe-H3,
3
2
4
OMe0-H3), 5.08 (ddt, J9E,8 = 10.3, J9E,9Z = 2.0, J9E,7 = 1.0, 9-E-H1, 90-E-H1), 5.13
3
2
3
(dd, J9Z,8 = 17.0, J9Z,9E = 2.0, 9-Z-H1, 90-Z-H1), 6.00 (ddt, J8,9Z = 17.0,
3J8,9E = 10.3, J8,7 = 7.0, 8-H1, 80-H1), 6.84 (dd, J5,6 = 8.0, J5,3 = 1.5, 5-H1, 50-H1),
3
3
4
4
3
7.05 (d, J3,5 = 1.5, 3-H1, 30-H1), 7.21 (d, J6,5 = 8.0, 6-H1, 60-H1) ppm.
13C NMR (400 MHz, DMSO): d = 39.25, 55.85, 113.19, 116.13, 120.47, 121.96,
136.53, 137.17, 140.05, 149.95, 154.61 ppm.
N-t-BOC-tyramine.35 A solution of NaHCO3 (11.38 g, 135 mmol, 1.27 equiv) in