X.-P. He et al. / Carbohydrate Research 346 (2011) 1320–1326
1325
and concentrated under reduced pressure to give the crude residue
Co., China). The volume of MiliQ water droplet was 0.5
l
L. The h
which was purified by column chromatography.
value of mica is nearly zero.
4.3.1. Methyl 6-deoxy-6-(10H-10,20,30-triazolyl-4-yl-
4.7. Observation of surface morphology
hexadecanoate)-
From compound 6 (265 mg, 0.338 mmol), column chromatogra-
phy (EtOAc–EtOH, 12:1?8:1) afforded as white solid
(135.1 mg, 77.8%). TLC: Rf = 0.66 (EtOAc–MeOH, 6:1); [ +49.2
a-D-glucopyranoside (8)
The morphology of glycolipid LB films on mica was obtained by
using AFM (AJ-III, Aijian nanotechnology Inc., China) in air with a
tapping mode at room temperature. The cantilever of AFM tip
was (Mikro Masch Co., Russia) a Si pyramidal tip with a spring con-
stant of 3.0 N/m. All images were obtained at least five macroscop-
ically separated areas and were analyzed off-line by using the
software provided with the AFM instruments.
8
a
a
]
D
(c 0.2, CH3OH); 1H NMR (400 MHz, CDCl3): d 7.76 (s, 1H), 5.20 (s,
2H), 4.71 (br s, 2H), 4.63 (br d, J = 13.8 Hz, 1H), 3.89 (br s, 1H),
3.74 (t, J = 8.7 Hz, 1H), 3.42 (br d, J = 7.8 Hz, 1H), 3.24 (s, 3H),
3.12 (t, J = 8.7 Hz, 1H), 2.30 (t, J = 7.5 Hz, 2H), 1.59 (m, 2H), 1.25
(br s, 24H), 0.88 (t, J = 6.6 Hz, 3H); 13C NMR (100 MHz, CDCl3): d
173.5, 142.7, 125.7, 99.5, 73.6, 71.6, 70.7, 69.9, 57.2, 55.2, 50.8,
34.0, 31.8, 29.6, 29.6, 29.5, 29.4, 29.2, 29.2, 29.0, 24.7, 22.6, 14.0;
HRESIMS: m/z calcd for [C26H47N3O7+H]+: 514.3492, found:
514.3489.
Acknowledgments
This work was financial supported by National Natural Science
Foundation of China (Grant Nos. 20876045 and 21076071), Shang-
hai Science and Technology Community (No. 10410702700) and
the Fundamental Research Funds for the Central Universities (No.
WK1013002). X.-P. He also gratefully acknowledges the French
Embassy for the financial support of a co-tutored doctoral program.
4.3.2. Methyl 6-deoxy-6-(10H-10,20,30-triazolyl-4-yl-
hexadecanoate)-
From compound 7 (280 mg, 0.357 mmol), column chromatogra-
phy (EtOAc–EtOH, 12:1?8:1) afforded as white solid
(143.7 mg, 78.4%). TLC: Rf = 0.46 (EtOAc–MeOH, 6:1); [ +50.1
a-D-galactopyranoside (9)
9
a
a]
D
Supplementary data
(c 0.1, CH3OH); 1H NMR (400 MHz, CDCl3): d 7.72 (s, 1H), 5.21 (s,
2H), 4.78 (d, J = 3.3 Hz, 1H), 4.68 (dd, J = 4.5, 14.4 Hz, 1H), 4.59
(dd, J = 8.8, 14.4 Hz, 1H), 4.16 (br dd, J = 5.5, 8.2 Hz, 1H), 3.93 (br
s, 1H), 3.82 (br dd, J = 3.8, 10.4 Hz, 1H), 3.78 (br dd, J = 2.9,
9.2 Hz, 1H), 3.17 (s, 3H), 2.30 (t, J = 7.5 Hz, 2H), 1.59 (m, 2H), 1.25
(br s, 24H), 0.88 (t, J = 6.7 Hz, 3H); 13C NMR (100 MHz,
CDCl3+CD3OD): d 173.4, 142.0, 125.0, 99.5, 69.4, 69.2, 68.8, 68.1,
56.4, 54.1, 50.7, 33.3, 31.2, 28.9, 28.9, 28.8, 28.7, 28.6, 28.5, 28.3,
24.1, 21.9, 13.0; HRESIMS: m/z calcd for [C26H47N3O7+H]+:
514.3492, found: 514.3482.
Supplementary data associated with this article can be found, in
References
1. Tsuji, M. Cell Mol. Life Sci. 2006, 63, 1889–1898.
2. Wu, D.; Fujio, M.; Wong, C.-H. Bioorg. Med. Chem. 2008, 16, 1073–1083.
3. Worakitkanchanakul, W.; Imura, T.; Fukuoka, T.; Morita, T.; Sakai, H.; Abe, M.;
Rujiravanit, R.; Chavadej, S.; Minamikawae, H.; Kitamoto, D. Colloids Surf., B
2008, 65, 106–112.
4. Morita, T.; Fukuoka, T.; Konishi, M.; Imura, T.; Yamamoto, S.; Kitagawa, M.;
Sogabe, A.; Kitamoto, D. Appl. Microbiol. Biotechnol. 2009, 83, 1017–1025.
5. Piazza, M.; Rossini, C.; Fiorentina, S. D.; Pozzi, C.; Comelli, F.; Bettoni, I.; Fusi, P.;
Costa, B.; Peri, F. J. Med. Chem. 2009, 52, 1209–1213.
6. Ii, K.; Ichikawa, S.; Al-Dabbagh, B.; Bouhss, A.; Matsuda, A. J. Med. Chem. 2010,
53, 3793–3813.
7. Zhang, Z.; Zong, C.; Song, G.; Lv, G.; Chun, Y.; Wang, P.; Ding, N.; Li, Y. Carbohydr.
Res. 2010, 345, 750–760.
8. Vogel, J.; Bendas, G.; Bakowsky, U.; Hummel, G.; Schimidt, R. R.; Ketmann, U.;
Rothe, U. Biochim. Biophys. Acta 1998, 1372, 205–215.
9. Falconer, R. A.; Toth, I. Bioorg. Med. Chem. 2007, 15, 7012–7020.
10. de Almeida, M. V.; Hyaric, M. L. Mini-Rev. Org. Chem. 2005, 2, 283–297.
11. Thiesen, P. H.; Rosenfeld, H.; Konidala, P.; Garamus, V. M.; He, L.; Prange, A.;
Niemeyer, B. J. Biotechnol. 2006, 124, 284–301.
12. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–
2021.
13. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596–2599.
14. Aragäo-Leoneti, V.; Campo, V. L.; Gomes, A. S.; Field, R. A.; Carvalho, I.
Tetrahedron 2010, 66, 9475–9492.
4.4.
p
–A isotherm measurement
The
p–A isotherms of glycolipid monolayers were measured by
using a model 612D computerized Langmuir film balance (Nima
Technology, Coventry, UK). The spreading solution was prepared
by dissolving glycolipids into chloroform with a concentration of
1 mg/ml. Then, 70 lL of the solution was spread on pure MilliQ
water (HPLC grade) surface and 10 min was allowed for solvent
evaporation. The rectangular polytetrafluoroethylene PTFE trough
(20 ꢁ 30 cm2) having two movable barriers was filled with water.
The temperature of the subphase was maintained at 25 0.1 °C
by circulatory water from a thermostat circulated trough during
experiment. In order to clear up the contaminant, a PTFE nozzle
with an aspirator pump connected was applied to suck the surface
of the subphase before experiments. The compression rate used in
the study was 10 cm/min. The overall reproducibility in different
runs was ensured by 5–6 times measurements for each sample.
15. Fu, Q.; Liang, T.; Zhang, X.; Du, Y.; Guo, Z.; Liang, X. Carbohydr. Res. 2010, 345,
2690–2697.
16. Kumar, K. K.; Kumar, R. M.; Subramanian, V.; Das, T. M. Carbohydr. Res. 2010,
345, 2297–2304.
17. Dedola, S.; Hughes, D. L.; Nepogodiev, S. A.; Rejzek, M.; Field, R. A. Carbohydr.
Res. 2010, 345, 1123–1134.
18. Koschella, A.; Richter, M.; Heinze, T. Carbohydr. Res. 2010, 345, 1028–1033.
19. Chen, Y.-B.; Wang, Y.-J.; Lin, Y.-J.; Hu, C.-H.; Chen, S. J.; Chir, J. L.; Wu, A. T.
Carbohydr. Res. 2010, 345, 956–959.
20. Zhang, L.; Wei, G.; Du, Y. Carbohydr. Res. 2009, 344, 2083–2087.
21. Cheng, K.; Liu, J.; Liu, X.; Li, H.; Sun, H.; Xie, J. Carbohydr. Res. 2009, 344, 841–850.
22. Maschauer, S.; Prante, O. Carbohydr. Res. 2009, 344, 753–761.
23. Yeoh, K. K.; Butters, T. D.; Wilkinson, B. L.; Fairbanks, A. J. Carbohydr. Res. 2009,
344, 586–591.
4.5. LB films transfer
Glycolipids or PDA-glycolipid films were transferred by using
Langmuir–Blodgett (LB) technique at various surface pressures in
the range of 5–35 mN/m. The experiment was performed by pull-
ing the mica up vertically from the Langmuir trough. Freshly
cleaved mica was immersed in the subphase before spreading
the glycolipid solution.
24. Mallard-Favier, I.; Blach, P.; Cazier, F.; Delattre, F. Carbohydr. Res. 2009, 344,
161–166.
25. Song, Z.; He, X. P.; Li, C.; Gao, L. X.; Wang, Z. X.; Tang, Y.; Xie, J.; Li, J.; Chen, G.-R.
Carbohydr. Res. 2011, 346, 140–145.
4.6. Measurement of water contact angle
26. Lin, L.; Shen, Q.; Chen, G.-R.; Juan, X. Bioorg. Med. Chem. 2008, 16, 9757–9763.
27. Zhang, Y.-J.; He, X.-P.; Li, C.; Li, Z.; Shi, D.-T.; Gao, L. X.; Qiu, B. Y.; Shi, X. X.;
Tang, Y.; Li, J.; Chen, G. R. Chem. Lett. 2010, 39, 1261–1263.
28. Yang, J.-W.; He, X.-P.; Zhao, H.; Gao, L.-X.; Zhang, W.; Shi, X.-X.; Tang, Y.; Li, J.;
Chen, G. R. Bull. Korean Chem. Soc. 2010, 31, 3359–3365.
The values of water contact angle h of different LB films were
measured by a sessile drop method at 25 °C using an image analy-
sis (custom built equipment provided by Zhongchen Instrument