Interestingly, dynamic light scattering data of the aqueous
CTAB solution (Fig. 1) have supported the formation of
spherical nanoreactors (polarized optical microscope image,
ESI) with maximum population at 183 nm. However, there is
an equilibration between the spherical and small amount
(B10%) of ultralong cylindrical nanoreactor (B7500 nm).17
Fig. 1 Size and intensity data of the nanoreactor in DLS.
lipophilic nanoreactor and sodium bromide in the aqueous
surroundings. Addition of cationic surfactant bearing bromide
anion to PhI(OAc)2-polarized alkyne takes place at the interface
involving a six-membered transition state (A). The AcO: group
of the modified surfactant CTAA is immediately exchanged with
the more polarizable halide anion (B). A second bromide anion is
transferred to the putative intermediate through coordination of
the cationic nitrogen of CTAB to form C. Its solvolysis with
water (D) and simultaneous reductive elimination of hypervalent
iodane afford 3a. Complete regioselectivity of the reaction can be
explained due to placement of the relatively smaller and larger
organic part of the substrate directed toward the interface and
strongly lipophilic micellar core respectively. To understand the
reaction path, we have studied the reaction in ethylene glycol
media (eqn (2)) which probably progresses through formation
of intermediate E and subsequent solvolysis (F) to afford
keto-protected 3g. Indeed, a-bromoketone (8) is not found in
our experiments but is obtained in the commonly used Br+
addition method involving formation of bromonium species4
(G, eqn (3)).
ð4Þ
Financial support from DST (SR/NM/NS-29/2010 and
SR/S1/OC-22/2006), CRNN (C.U.) and CSIR (JRF and SRF),
India is gratefully acknowledged.
Notes and references
1 (a) Tandem Organic Reactions, ed. T.-L. Ho, John Wiley and Sons,
Inc, USA, 1992, pp. 57–87; (b) K. H. Jensen, J. D. Webb and
M. S. Sigman, J. Am. Chem. Soc., 2010, 132, 17471–17482.
2 (a) Halohydrins and derivatives, in Fiesers’ Reagents for Organic
Synthesis, ed. J. G. Smith and M. Fieser, Wiley, New York, 1990;
(b) A. Solladie-Cavallo, P. Lupattelli and C. Bonini, J. Org. Chem.,
´
2005, 70, 1605–1611; (c) A. Ros, A. Magriz, H. Dietrich, R. Ferna
E. Alvarez and J. M. Lassaletta, Org. Lett., 2006, 8, 127–130.
´
ndez,
3 N. Shakya, N. C. Srivastav, N. Desroches, B. Agrawal,
D. Y. Kunimoto and R. Kumar, J. Med. Chem., 2010, 53, 4130–4140.
4 (a) B. F. Sels, D. E. De Vos and P. A. Jacobs, J. Am. Chem. Soc.,
2001, 123, 8350–8359; (b) R. Mestres and J. Palenzuela, Green
Chem., 2002, 4, 314–316; (c) G. K. Dewkar, S. V. Narina and
A. Sudalai, Org. Lett., 2003, 5, 4501–4504; (d) M. Kirihara,
S. Ogawa, T. Noguchi, K. Okubo, Y. Monma, I. Shimizu,
R. Shimosaki, A. Hatano and Y. Hirai, Synlett, 2006,
2287–2289; (e) N. Suryakiran, P. Prabhakar, T. Srikanth Reddy,
K. Chinni Mahesh, K. Rajesh and Y. Venkateswarlu, Tetrahedron
Lett., 2007, 48, 877–881; (f) R. D. Patil, G. Joshi, S. Adimurthy
and B. C. Ranu, Tetrahedron Lett., 2009, 50, 2529–2532;
(g) M. K. Agrawal, S. Adimurthy, B. Ganguly and P. K. Ghosh,
Tetrahedron, 2009, 65, 2791–2797.
5 V. Conte, B. Floris, P. Galloni and A. Silvagni, Adv. Synth. Catal.,
2005, 347, 1341–1344.
6 J. Tatar, M. Baranac-Stojanovic, M. Stojanovic and R. Markovic,
´ ´
Tetrahedron Lett., 2009, 50, 700–703.
7 (a) S. Paul, V. Gupta, R. Gupta and A. Loupy, Tetrahedron Lett.,
2003, 44, 439–442; (b) T. Nobuta, S.-i. Hirashima, N. Tada,
T. Miura and A. Itoh, Tetrahedron Lett., 2010, 51, 4567–4578.
8 (a) N. T. Patil and Y. Yamamoto, Chem. Rev., 2008, 108,
3395–3442; (b) M. C. Willis, Chem. Rev., 2010, 110, 725–748.
9 Y. Wei and M. Shi, Acc. Chem. Res., 2010, 43, 1005–1018.
10 V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008, 108, 5299–5358.
11 (a) D. M. Vriezema, M. C. Argones, J. A. A. W. Elemans,
J. J. L. M. Cornelissen, A. E. Rowan and R. J. M. Nolte, Chem.
Rev., 2005, 105, 1445–1489; (b) N. Chatterjee, P. Pandit, S. Halder,
A. Patra and D. K. Maiti, J. Org. Chem., 2008, 73, 7775–7778.
12 (a) D. K. Maiti, N. Chatterjee, P. Pandit and S. K. Hota, Chem.
Commun., 2010, 46, 2022–2024; (b) P. Pandit, N. Chatterjee and
D. K. Maiti, Chem. Commun., 2011, 47, 1285–1287.
ð1Þ
ð2Þ
ð3Þ
13 R. I. Hollingsworth and G. Wang, Chem. Rev., 2000, 100,
4267–4282.
´
14 (a) A. Iglesias, E. G. Perez and K. Muniz, Angew. Chem., Int. Ed.,
´
2010, 49, 8109–8111; (b) K. H. Jensen, J. D. Webb and
M. S. Sigman, J. Am. Chem. Soc., 2010, 132, 17471–17482.
15 N. Iranpoor, H. Firouzabadi and M. Shekarize, Org. Biomol.
Chem., 2003, 1, 724–727.
16 J. Seayad, A. M. Seayad and C. L. L. Chai, Org. Lett., 2010, 12,
1412–1415.
17 T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev., 2005,
105, 1401–1443.
Similarly, difunctionalization of olefin involves syn-addition
of PhI(OAc)2 and halide ion (X:, I, eqn (4)) and subsequent
reductive elimination (J) in a stereoelectronically anti fashion.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6933–6935 6935