3 (a) S. Kobayashi, M. Sugiura, H. Kitagawa and W. W.-L. Lam,
Chem. Rev., 2002, 102, 2227; (b) T. Jin, M. Himuro and
Y. Yamamoto, Angew. Chem., Int. Ed., 2009, 48, 5893;
(c) K. Inanaga, K. Takasu and M. Ihara, J. Am. Chem. Soc.,
2005, 127, 3668; (d) M. B. Boxer and H. Yamamoto, J. Am. Chem.
Soc., 2006, 128, 48; (e) J. Sun and S. A. Kozmin, J. Am. Chem.
Soc., 2005, 127, 13512.
4 The gas phase acidities DGacid (kcal molꢀ1) of Tf-substituted
carbon acids are as follows: TfCH3 (339.8), Tf2CH2 (300.6), Tf3CH
(289.0). See: (a) I. A. Koppel, R. W. Taft, F. Anvia, S.-Z. Zhu,
L.-Q. Hu, K.-S. Sung, D. D. DesMarteau, L. M. Yagupolskii,
Y. L. Yagupolskii, N. V. Ignat’ev, N. V. Kondratenko,
A. Y. Volkonskii, V. M. Vlasov, R. Notario and P.-C. Maria,
J. Am. Chem. Soc., 1994, 116, 3047; (b) I. Leito, E. Raamat,
A. Kutt, J. Saame, K. Kipper, I. A. Koppel, I. Koppel, M. Zhang,
M. Mishima, L. M. Yagupolskii, R. Yu. Garlyauskayte and
A. A. Filatov, J. Phys. Chem. A, 2009, 113, 8421.
5 F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456.
6 (a) K. Ishihara, A. Hasegawa and H. Yamamoto, Angew. Chem.,
Int. Ed., 2001, 40, 4077; (b) K. Ishihara, A. Hasegawa and
H. Yamamoto, Synlett, 2002, 1296; (c) K. Ishihara, A. Hasegawa
and H. Yamamoto, Synlett, 2002, 1299; (d) A. Hasegawa,
Y. Naganawa, M. Fushimi, K. Ishihara and H. Yamamoto, Org.
Lett., 2006, 8, 3175.
7 (a) H. Yanai, A. Takahashi and T. Taguchi, Chem. Commun.,
2010, 46, 8728; (b) H. Yanai, Y. Yoshino, A. Takahashi and
T. Taguchi, J. Org. Chem., 2010, 75, 5375; (c) A. Takahashi,
H. Yanai, M. Zhang, T. Sonoda, M. Mishima and T. Taguchi,
J. Org. Chem., 2010, 75, 1259; (d) A. Takahashi, H. Yanai and
T. Taguchi, Chem. Commun., 2008, 2385.
8 R. J. Koshar and L. L. Barber, Jr., U.S. Patent 4053519, 1977.
9 Due to the high electrophilicity, Tf2CQCH2 was synthesized as an
impure form, see: L. L. Barber, Jr. and R. J. Koshar, U.S. Patent
3962346, 1976.
10 (a) C. Tse, A. R. Shoemaker, J. Adickes, M. G. Anderson, J. Chen,
S. Jin, E. F. Johnson, K. C. Marsh, M. J. Mitten, P. Nimmer,
L. Roberts, S. K. Tahir, Y. Xiao, X. Yang, H. Zhang, S. Fesik,
S. H. Rosenberg and S. W. Elmore, Cancer Res., 2008, 68, 3421;
(b) D. S. Lindsay, J. P. Dubey and T. J. Kennedy, Vet. Parasitol.,
2000, 92, 165.
11 (a) L. M. Yagupol’skii and B. E. Gruz, Zh. Obshch. Khim., 1961,
31, 1219; (b) A. J. Beaumont and J. H. Clark, J. Fluorine Chem.,
1991, 52, 295; (c) W. Su, Tetrahedron Lett., 1994, 35, 4955;
(d) R. Goumont, N. Faucher, G. Moutiers, M. Tordeux and
C. Wakselman, Synthesis, 1997, 691; (e) L. Xu, J. Cheng and
M. L. Trudell, J. Org. Chem., 2003, 68, 5388.
12 J. B. Hendrickson and K. W. Bair, J. Org. Chem., 1977,
42, 3875.
13 The reactions of Tf2O with aryl Grignard reagents are ineffective
for the preparation of aryl triflones, see: X. Creary, J. Org. Chem.,
1980, 45, 2727.
14 (a) O. Mouhtady, H. Gaspard-Iloughmane, A. Laporterie and
C. Le Roux, Tetrahedron Lett., 2006, 47, 4125; (b) Y. Chang and
C. Cai, J. Fluorine Chem., 2005, 126, 937.
15 A. M. Dyke, D. M. Gill, J. N. Harvey, A. J. Hester, G. C. Lloyd-
Jones, M. P. Munoz and I. R. Shepperson, Angew. Chem., Int. Ed.,
2008, 47, 5067.
16 For selected examples of the Diels–Alder approach to poly-substituted
arenes, see: (a) T. Matsumoto, T. Hosoya, M. Katsuki and K. Suzuki,
Tetrahedron Lett., 1991, 32, 6735; (b) G. Shi, S. Cottens, S. A. Shiba
and M. Schlosser, Tetrahedron Lett., 1992, 48, 10569; (c) B. O.
Ashburn and R. G. Carter, Angew. Chem., Int. Ed., 2006, 45, 6737;
(d) M. Dai, D. Sarlah, M. Yu, S. J. Danishefsky, G. O. Jones and
K. N. Houk, J. Am. Chem. Soc., 2007, 129, 645; (e) B. O. Ashburn,
R. G. Carter and L. N. Zakharov, J. Am. Chem. Soc., 2007, 129, 9109;
(f) G. Hilt and M. Danz, Synthesis, 2008, 2257.
Fig. 4 Two step conversion of gem-bis(triflyl)cyclohexenes to aryl
triflones.
Corey’s procedure,19 the resulting diene 4ba was treated by
activated MnO2 at 70 1C in methylcyclohexane to give aryl
triflone 5ba in 80% yield. Likewise, 2-phenylethylated and
isobutylated cyclohexenes 3ca and 3da were smoothly converted
to the corresponding aryl triflones 5ca and 5da in excellent
yields via 4ca and 4da, respectively. During the two step
aromatization, a silyl protecting group in the reaction substrate
can be fully tolerated. Thus, thermolysis of silyloxymethyl
cyclohexene 3ea followed by MnO2 oxidation of 4ea gave aryl
triflone 5ea in good overall yield. Applying this transformation,
triflyl biaryl 5fa and tetra-substituted benzene 5bc were also
prepared in excellent yields from three component products 3fa
and 3bc. These examples clearly show that the present reaction
sequence affords a powerful tool to synthesize poly-substituted
aryl triflones in a regioselective manner.
In summary, the three component reaction of Tf2CH2 1,
aldehydes, and 1,3-dienes smoothly proceeded via self-promoting
condensation between 1 and aldehydes followed by the Diels–
Alder cycloaddition of the resulting intermediates with 1,3-dienes
and gem-bis(triflyl)cyclohexene products were obtained in good
to excellent yields. In the present reaction, Tf2CH2 1 performs
not only as a reaction component but also as a Brønsted acid
promoter for the condensation step with aldehydes. Further-
more, gem-bis(triflyl)cyclohexene products can be converted to
the corresponding aryl triflones through the stepwise aromati-
zation of cyclohexene rings. Since the three component reaction
gave gem-bis(triflyl)cyclohexenes in a highly regioselective manner,
this reaction sequence affords a facile and practical route for
poly-substituted aryl triflones. Further studies on the relation
of this chemistry are in progress in our laboratory.
Notes and references
1 (a) W. A. Sheppard, J. Am. Chem. Soc., 1963, 85, 1314; (b) A. Vij,
R. L. Kirchmeier, J. M. Shreeve and R. D. Verma, Coord. Chem.
Rev., 1997, 158, 413.
2 (a) J. J. Wolff, F. Gredel, T. Oeser, H. Irngartinger and H. Pritzkow,
Chem.–Eur. J., 1999, 5, 29; (b) G. K. S. Prakash, J. Hu and
G. A. Olah, Org. Lett., 2003, 5, 3253; (c) R. W. Steensma,
S. Galabi, J. R. Tagat and S. W. McCombie, Tetrahedron Lett.,
2001, 42, 2281; (d) R. Kargbo, Y. Takahashi, S. Bhor, G. R. Cook,
G. C. Lloyd-Jones and I. R. Shepperson, J. Am. Chem. Soc., 2007,
129, 3846.
17 The pKa value of (PhSO2)CH2 in DMSO was reported as 12.2.
See: F. G. Bordwell, M. Van Der Puy and N. R. Vanier, J. Org.
Chem., 1976, 41, 1883.
18 J. B. Hendrickson, A. Giga and J. Wareing, J. Am. Chem. Soc.,
1974, 96, 2275.
19 E. J. Corey and S. E. Lazerwith, J. Am. Chem. Soc., 1998, 120,
12777.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7245–7247 7247