Journal of the American Chemical Society
Page 4 of 6
We thank the Natural Science Foundation of China, the Na-
resulting acyl-nickel−alkyl intermediate B1 isomerizes to a
more stable species C1 by rotating styrene along the Ni-
Cben bond to approach a η3 binding mode. Next, C1 under-
goes the reductive elimination via a transition state TS3 to
produce the product complex 3a-cpx. Finally, 3a-cpx re-
leases the branched product 3a by binding with styrene 2a
and the PCy3 ligand to form A0 complex, which starts the
next catalytic cycle. Similar steps are involved in the
pathway II: the aldehyde hydrogen transfer via TS2 and
the subsequent reductive elimination via TS4 to form the
linear product 4a. The hydrogen transfer processes have
the highest energy barriers (TS1 and TS2) in the pathways
I and II, respectively. Thus, the hydrogen transfer is the
turnover-limiting step of the overall process.21 TS1 is more
stable than TS2 by 3.1 kcal/mol, indicating that the alde-
hyde C−H bond prefers to transfer to the electron-
deficient carbon atom of the styrene. Therefore, the
branched adduct should be the main product, and the
reactions involving the electron-deficient alkenes should
proceed better, which are consistent with the experi-
mental results (entries 3, 6). And the energy of species C1
is close to A0 in the main pathway, which means they
have sufficient stability to interconvert under the reaction
condition. The experiment of H/D exchange of aldehyde
d-1a also showed this process is reversible.
1
2
3
4
5
6
7
8
tional Basic Research Program of China (2012CB821600), the
Ministry of Education of China (B06005), and the Tianjin
Natural Science Foundation (14JCYBJC20100) for financial
support.
SUPPORTING INFORMATION PARAGRAPH.
Experimental procedures and and analytical data of the
products (PDF). This material is available free of charge via
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) For recent reviews, see: (a) Jun, C.-H.; Jo, E.-A.; Park, J.-W.
Eur. J. Org. Chem. 2007, 1869. (b) Willis, M. C. Chem. Rev. 2010,
110, 725. (c) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202.
(2) Sakai, K.; Ide, J.; Oda, O.; Nakamura, N. Tetrahedron Lett.
1972, 1287.
(3) (a) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7, 936.
(b) Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.;
Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1994, 116, 1821. (c) Bet-
ley, T. A.; Peters, J. C. Angew. Chem., Int. Ed. 2003, 42, 2385. (d)
Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc.
2009, 131, 6932. (e) Hoffman, T. J.; Carreira, E. M. Angew. Chem.
Int. Ed. 2011, 50, 10670.
(4) (a) Schwartz, J.; Cannon, J. B. J. Am. Chem. Soc. 1974, 96,
4721. (b) Vora, K. P.; Lochow, C. F.; Miller, R. G. J. Organomet.
Chem. 1980, 192, 257. (c) Vora, K. P. Synth. Commun. 1983, 13, 99.
(d) Marder, T. B.; Roe, D. C.; Milstein, D. Organometallics 1988,
7, 1451. (e) Roy, A. H.; Lenges, C. P.; Brookhart, M. J. Am. Chem.
Soc. 2007, 129, 2082.
(5) For (2-pyridyl)aldimines, see: (a) Suggs, J. W. J. Am. Chem.
Soc. 1979, 101, 489. (b) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc.
Chem. Res. 2008, 41, 222. For salicylaldehydes, see: (c) Tanaka,
M.; Imai, M.; Yamamoto, Y.; Tanaka, K.; Shimowatari, M.;
Nagumo, S.; Kawahara, N.; Suemune, H. Org. Lett. 2003, 5, 1365.
(d) Stemmler, R. T.; Bolm, C. Adv. Synth. Catal. 2007, 349, 1185.
(e) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am.
Chem. Soc. 2010, 132, 16330. For β-sulfur-substituted aldehydes,
see: (f) Willis, M. C.; McNally, S. J.; Beswick, P. J. Angew. Chem.
Int. Ed. 2004, 43, 340. (g) Chaplin, A. B.; Hooper, J. F.; Weller, A.
S.; Willis, M. C. J. Am. Chem. Soc. 2012, 134, 4885. For ortho-
(diphenylphosphino)benzaldehydes, see: (h) Lee, H.; Jun, C.-H.;
Bull. Korean Chem. Soc. 1995, 16, 66. For orthosulfonamidoben-
zaldehydes, see: (i) Zhang, T.; Qi, Z.; Zhang, X.; Wu, L.; Li, X.;
Chem. Eur. J. 2014, 20, 3283. For acrylamides, see: (j) Tanaka, K.;
Shibata, Y.; Suda, T.; Hagiwara, Y.; Hirano, M. Org. Lett. 2007, 9,
1215. (k) Shibata, Y.; Tanaka, K. J. Am. Chem. Soc. 2009, 131, 12552.
For ortho-hydroxystyrenes, see: (l) Murphy, S. K.; Bruch, A.;
Dong, V. M. Angew. Chem. Int. Ed. 2014, 53, 2455.
The
decarbonylation
processes
of
3-phenyl-
propionaldehyde and benzaldehyde were also computed
(Figure 1c).14 The highest energy of transition state of reac-
tion of benzaldehyde (b2-TS1, 23.1 kcal/mol) is lower than
that in the reaction of 3-phenyl-propionaldehyde (b1-TS6,
29.6 kcal/mol), indicating that the aromatic aldehydes are
easier to undergo the decarbonylation than the aliphatic
aldehydes. This consequently rationalizes the low yield of
aromatic aldehydes in the hydroacylation reaction.
Our computed results indicate that an alternative
pathway, which involves the oxidative addition of the al-
dehyde C−H bond and the migratory insertion of the al-
kene into the nickel-hydride bond, is less favorable (Fig-
ure S2-3).14 In addition, we also consider another possible
reaction mechanism, which mainly involves the sequential
steps of oxidative cyclization, hydrogen migration and
reductive elimination to form the product. The computa-
tional results show that this pathway requires a very high
activation energy of 56.2 kcal/mol (Figure S2-4).14
In summary, we have developed a highly selective
nickel-catalyzed hydroacylation reaction of styrenes with
aldehydes that does not require chelating groups. This
reaction offers a new approach to the selective prepara-
tion of branched ketones in high yields. The experimental
and computational studies show that the reaction pro-
ceeds through a LLHT pathway which involves the alde-
hyde hydrogen transfer to a coordinated alkene to form
acyl-nickel−benzyl intermediate without oxidative addi-
tion. These results also disclosed that the origins of the
reactivity and regioselectivity of the reaction, which may
provide useful insights for developing new intermolecular
hydroacyaltion reactions with nickel or other transition
metal catalysts.
(6) (a) Lenges, C. P.; Brookhart, M.; J. Am. Chem. Soc. 1997, 119,
3165. (b) Lenges, C. P.; White, P. S.; Brookhart, M. J. Am. Chem.
Soc. 1998, 120, 6965. (c) Chen, Q.-A.; D. Kim, K.; Dong, V. M., J.
Am. Chem. Soc. 2014, 136, 3772. d) Yang, J.-F.; Yoshikai, N. J. Am.
Chem. Soc. 2014, 136, 16748.
(7) (a) Kondo, T.; Tsuji, Y.; Watanabe, Y.; Tetrahedron Lett.
1987, 28, 6229. (b) Fukuyama, T.; Doi, T.; Minamino, S.; Omura,
S.; Ryu, I. Angew. Chem. Int. Ed. 2007, 46, 5559. (c) Shibahara, F.;
Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120.
(8) (a) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem.
Soc. 2009, 131, 14190. (b) DiRocco, D. A.; Rovis, T. Angew. Chem.
Int. Ed. 2011, 50, 7982. (c) Schedler, M.; Wang, D.-S.; Glorius, F.
Angew. Chem. Int. Ed. 2013, 52, 2585.
(9) Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 55,
2554.
4
ACKNOWLEDGMENT
ACS Paragon Plus Environment