W. Wang et al.
2489; j) V. U. Khuzhaev, I. Zhalolov, K. K. Turgunov, B. Tashkhodz-
haev, M. G. Levkovich, S. F. Aripova, A. S. Shashkov, Chem. Nat.
Compd. 2004, 40, 269; k) T. Kagata, S. Saito, H. Shigemori, A.
1517; l) H. Kobayashi, K. Shin-Ya, K. Nagai, K.-I. Suzuki, Y. Haya-
kawa, H. Seto, B.-S. Yun, I.-J. Ryoo, J.-S. Kim, C.-J. Kim, I.-D. Yoo,
J. Antibiot. 2001, 54, 1013.
ing on noncovalent-bond-mediated catalysis is different
from the reported organocatalytic aldol reactions of isatins
with carbonyls,[4] which use a covalent bond as the activation
force. Moreover, the enantioselectivity can be improved to
excellent levels by simple washing of the solid products.
These features render this methodology synthetically viable
and attractive in the efficient synthesis of biologically intri-
guing oxindole alkaloids, as demonstrated by the facile syn-
thesis of (S)-(À)-spirobrassinin without using protecting
groups.
[3] For selected examples of the use of isatins as starting materials, see:
a) G. Luppi, P. G. Cozzi, M. Monari, B. Kaptein, Q. B. Broxterman,
Shintani, S. Hayashi, M. Murakami, M. Takeda, T. Hayashi, Org.
l) N. V. Hanhan, A. H. Sahin, T. W. Chang, J. C. Fettinger, A. K.
Franz, Angew. Chem. 2010, 122, 756; Angew. Chem. Int. Ed. 2010,
49, 744; m) J. Deng, S. Zhang, P. Ding, H. Jiang, W. Wang, J. Li,
Adv. Synth. Catal. 2010, 352, 833; n) P. Chauhan, S. S. Chimni,
Experimental Section
General Procedure (Table 2): Compound 2 (5.0 mmol) was added to a
solution of 1 (1.0 mmol) and PhCO2H (12 mg, 0.1 mmol) in DMA (2 mL)
in the presence of catalyst I (30 mg, 0.1 mmol) at À158C. The mixture
was stirred at À158C for a specified time, monitored by utilizing the
color change to light yellow and by TLC until these indicated reaction
completion. An HCl solution (1n, 10 mL) was added to the reaction mix-
ture, which was then extracted with EtOAc (3ꢂ5 mL). The combined or-
ganic extracts were dried (Na2SO4), filtered, and concentrated in vacuo
to provide a light yellow solid (for products 3a–j and n Table 2, en-
tries 1–10 and 14) or oil (for products 3k–m Table 2, entries 11–13). The
product was sufficiently pure (>95% purity) for yield calculation, char-
acterization, and chiral HPLC analysis. Interestingly, it was found in
some cases that, when a product was obtained as a solid (Table 2, en-
tries 1–10 and 14), if it was washed with CH2Cl2 (3 mL) and then filtered
the collected solid had a higher enantiopurity based on chiral HPLC
analysis than prior to the washing (e.g., products 3a–c, e, f, i, j and n, ee
values shown in parenthesis in Table 2). However, in case of 3d, g, and h,
the filtrate exhibited a higher enantiopurity than the solid.
Malkov, M. A. Kabeshov, M. Bella, O. Kysilka, D. A. Malyshev, K.
ˇ
ˇ
´
Nakamura, N. Hara, H. Nakashima, K. Kubo, N. Shibata, T. Toru,
Chem. Eur. J. 2008, 14, 8087; f) N. Hara, S, Nakamura, K. Kubo, N.
Shibata, T. Toru, Chem. Eur. J. 2009, 15, 6790; for some recent ex-
ample of the use of oxindoles in organocatalysis, see: g) K. Jiang,
h) L. L. Wang, L. Peng, J. F. Bai, Q. C. Huang, X. Y. Xu, L. X.
3132; j) X. Companyꢅ, A. Zea, A. R. Alba, A. Mazzanti, A.
Moyano, R. Rios, Chem. Commun. 2010, 46, 6953; k) A. Q. Ma,
Acknowledgements
We are grateful for financial support from the China 111 Project (Grant
B07023) and the “Thousand Talents” program of China.
Keywords: Henry reaction · isatins · natural products ·
organocatalysis · oxindoles
[5] For recent reviews on Henry reactions, see: a) C. Palomo, M. Oiar-
version of the Henry reaction with isatins that has been reported,
see: Y.-J. Wang, Z.-X. Shen, Y.-W. Zhang, Chin. J. Org. Chem. 2006,
26, 1291.
[7] For recent reviews on the catalytic asymmetric synthesis of quater-
nary stereogenic centers, see: a) M. Bella, T. Gasperi, Synthesis
101, 11943; e) D. J. Ramon, M. Yus, Curr. Org. Chem. 2004, 8, 149.
[8] a) Y. Misumi, R. A. Bulman, K. Matsumoto, Heterocycles 2002, 56,
128, 732; e) S.-Y. Tosaki, K. Hara, V. Gnanadesikan, H. Morimoto,
[1] For reviews on oxindole alkaloids, see: a) S. Peddibhotla, Curr.
Bioact. Compd. 2009, 5, 20; b) C. V. Galliford, K. A. Scheidt,
[2] For selected examples of natural products that possess 3-substituted
3-hydroxyoxindole substructures, see: a) M. Kitajima, I. Mori, K.
b) H.-P. Zhang, Y. Kamano, Y. Ichihara, H. Kizu, K. Komiyama, H.
d) K. C. Nicolaou, P. B. Rao, J. L. Hao, M. V. Reddy, G. Rassias,
e) C. Takahashi, A. Numata, Y. Ito, E. Matsumura, H. Araki, H.
Frꢃchard, N. Fabre, C. Pꢃan, S. Montaut, M.-T. Fauvel, P. Rollin, I.
Fourastꢃ, Tetrahedron Lett. 2001, 42, 9015; g) J. I. Jimꢃnez, U.
Huber, R. E. Moore, G. M. L. Patterson, J. Nat. Prod. 1999, 62, 569;
h) J. Kohno, Y. Koguchi, M. Nishio, K. Nakao, M. Juroda, R. Shimi-
7794
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2011, 17, 7791 – 7795