useful in the synthesis of elaborated arylboronic acids that
are otherwise difficult to synthesize. Our interest has
focused on finding a simple modifier on the boron atom
serving both as an ortho-directing group in the o-CꢀH
functionalization reactions and asa protecting group in the
cross-coupling reactions (Scheme 1). Such a bifunctional
modifier would allow us to develop new synthetic access to
highly elaborated arylboronic acids, which is in turn bene-
ficial for the synthesis of highly functionalized arene deriva-
tives. Herein, we describe the use of anthranilamide as such a
bifunctional agent for arylboronic acid synthesis. It shows a
higher ability for ortho-direction and much higher robust-
ness toward SMC and isolation procedures than PZA.
Scheme 1. Use of a Removable Modifier on the Boron Atom
That Serves As Both Protecting and ortho-Directing Group for
the Synthesis of Highly Functionalized Arene Derivatives
Scheme 2. Stabilities of Modified Phenylboronic Acids
the SuzukiꢀMiyaura cross-coupling reaction, have been
developed.5,6 They have made possible the synthesis of
rather complex organoboronic acids through iterative
SuzukiꢀMiyaura coupling.4,7,8 As a new boron-retaining
strategy, we recently reported use of 2-(pyrazol-5-yl)-
aniline (PZA) as an agent for Ru-catalyzed ortho-
silylation,9,10 in which coordination of the sp2-nitrogen
atom of PZA to the catalyst is crucial.11ꢀ13 These boron-
retaining syntheses of arylboronic acids are particularly
(5) (a) Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007,
129, 758. (b) Noguchi, H.; Shioda, T.; Chou, C.-M.; Suginome, M. Org.
Lett. 2008, 10, 377. (c) Iwadate, N.; Suginome, M. J. Organomet. Chem.
2009, 694, 1713. (d) Iwadate, N.; Suginome, M. Org. Lett. 2009, 11, 1899.
(e) Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548.
(6) (a) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716.
(b) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc.
2008, 130, 466. (c) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2008,
130, 14084. (d) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem.
Soc. 2009, 131, 6961.
(7) (a) Ishikawa, S.; Manabe, K. Chem. Lett. 2006, 35, 164. (b)
Ishikawa, S.; Manabe, K. Chem. Commun. 2006, 2589. (c) Ishikawa,
S.; Manabe, K. Chem. Lett. 2007, 36, 1302. (d) Ishikawa, S.; Manabe, K.
Tetrahedron 2010, 66, 297.
(8) Short reviews on iterative SuzukiꢀMiyaura coupling: (a) Manabe,
K.; Ishikawa, S. Chem. Commun. 2008, 3829. (b) Tobisu, M.; Chatani, N.
Angew. Chem., Int. Ed. 2009, 48, 3565. (c) Wang, C.; Glorius, F. Angew.
Chem., Int. Ed. 2009, 48, 5240.
(9) For ortho-directed CꢀH silylation, see: Williams, N. A.; Uchi-
maru, Y.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1995, 1129. (b)
Kakiuchi, F.; Igi, K.; Matsumoto, M.; Chatani, N.; Murai, S. Chem.
Lett. 2001, 422. (c) Kakiuchi, F.; Igi, K.; Matsumoto, M.; Hayamizu, T.;
Chatani, N.; Murai, S. Chem. Lett. 2002, 396. (d) Kakiuchi, F.;
Matsumoto, M.; Tsuchiya, K.; Igi, K.; Hayamizu, T.; Chatani, N.;
Murai, S. J. Organomet. Chem. 2003, 686, 134. Tobisu, M.; Ano, Y.;
Chatani, N. Chem. Asian J. 2008, 3, 1585.
(10) For representative CꢀH silylations without using directing
groups, see: Klare, H. F. T.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki,
Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312 and reference therein.
(11) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
(12) For directed metalation (stoichiometric), see: (a) Beak, P.;
Snieckus, V. Acc. Chem. Res. 1982, 15, 306. (b) Snieckus, V. Chem.
Rev. 1990, 90, 879–933. (c) Antoft-Finch, A.; Blackburn, T.; Snieckus, V.
J. Am. Chem. Soc. 2009, 131, 17750 and references therein.
(13) For directed catalytic ortho-CꢀH functionalization, see: (a)
Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda,
N.; Chatani, N. Nature 1993, 366, 529. For earlier pioneering work, see:
(b) Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728.
Reviews: (c) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (d) Handbook
of CꢀH Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005.
After brief screening of some 1,3,2-diazaboracyclohex-
ane structures, we found that PhB(aam) 1a (see Scheme 2
and Table 1 for the structure), which was prepared by
condensation of PhB(OH)2 with commercially available
anthranilamide in toluene under reflux in high yield, shows
high stability toward moisture, oxygen, and even chroma-
tography on silica gel.14 The stabilities of the cyclic diami-
noborane derivatives were compared in DMSO/D2O
(10:1) at room temperature (Scheme 2). To our surprise,
even PhB(pin) decomposed gradually under these reaction
conditions. The half-life was determined to be 78 h by 1H
NMR measurement. In contrast, PhB(dan) showed no
hint of decomposition under the same reaction conditions.
PhB(mida) (mida: N-methyliminodiacetato) was also ro-
bust, although it too underwent slow hydrolysis (t1/2
=
140 h). Although less stable than the DAN and MIDA
protecting groups, AAM exhibited much higher stability
than the previous directing group PZA.
Ru-catalyzed ortho-silylation of PhB(aam) (1a) with
dimethylphenylsilane proceeded in high yield in the pre-
senceofRuH2(CO)(PPh3)3 withnorbornene asa hydrogen
scavenger at 135 °C (Table 1).5bꢀd The ortho-silylated
product 2aa was isolated by silica gel flash column chro-
matography. Among the hydrosilanes examined for the
(14) (a) Chissick, S. S.; Dewar, M. J. S.; Maitlis, P. M. J. Am. Chem.
Soc. 1959, 81, 6329. (b) Chissick, S. S.; Dewar, M. J. S.; Maitlis, P. M.
J. Am. Chem. Soc. 1961, 83, 2708.
Org. Lett., Vol. 13, No. 10, 2011
2663