The Journal of Organic Chemistry
NOTE
1H NMR (CD2Cl2, 400 MHz, 298 K): δ 8.35 (s, 1H), 7.99À7.96
(m, 1H), 7.90À7.88 (m, 1H), 7.78 (d, J = 8 Hz, 1H), 7.74À7.69 (m,
3H), 7.55À7.31 (m, 14H), 6.44À641 (m, 2H), 4.03 (s, 2H), 3.63 (s,
2H), 2.36 (d, J = 8 Hz, 1H), 2.09 (d, J = 8 Hz, 1H) ppm; 13C NMR
(CDCl3, 100 MHz, 298 K): δ 175.8 (C), 138.4 (C), 137.3 (C), 134.1
(C), 132.5 (C), 132.1 (C), 131.7 (C), 131.4 (CH), 130.7 (C), 130.2
(CH), 129.5 (CH), 128.7 (C), 128.2 (CH), 128.1 (CH), 127.6 (CH),
126.8 (CH), 126.7 (CH), 126.1 (CH), 125.8 (CH), 125.8 (CH), 125.7
(CH), 123.8 (CH), 51.1 (CH2), 48.2 (CH), 45.8 (CH) ppm; MS (FAB):
m/z 592.2 [M + H]+, 100%; 540.4, 48%; HRMS (FAB) calcd for
C43H30O2N: 592.2277; obsd m/z 592.2283 [M + H]+. Anal. Calcd for
C43H29NO2: C, 87.28; H, 4.94; N, 2.37. Found: C, 87.35; H, 4.57; N, 2.29.
N-(1-Anthryl) Succinimide (2a). To a solution of cis-endo-
bicyclo[2.2.1]hept-5-ene-2,3- dicarboxylic anhydride (3)13 (0.136 g,
0.83 mmol) and 1-aminoanthracene (0.160 g, 0.83 mmol) in acetic acid
(6 mL) was added zinc acetate dihydrate (0.018 g, 0.08 mmol). The
reaction mixture was refluxed for 2 h. After cooling, the reaction mixture
was poured into iceÀwater (120 mL) and was extracted with CH2Cl2
(20 mL Â 3). The organic layers were combined and washed with 0.5 M
NaHCO3 aqueous solution (20 mL Â 3), dried over anhydrous
anhydrous MgSO4, filtered, and evaporated into dryness to afford a
dark brown solid. The crude product was further purified by column
chromatography on silica gel (CH2Cl2) giving 1b as a pale brown solid
(0.254 g, 90%): mp 227À228 °C (CHCl3/EtOH); 1H NMR (CD2Cl2,
500 MHz, 253 K): δ 8.54 (s, 1H), 8.13À8.11 (m, 3H), 8.05À7.98 (m,
2H), 7.52À7.48 (m, 3H), 7.13 (d, J = 5 Hz, 1H), 6.39 (s, 2H), 3.71
(s, 2H), 3.55 (s, 2H), 1.82 (d, J = 10 Hz, 1H), 1.71 (d, J = 10 Hz,
1H) ppm; 13C NMR (CDCl3, 100 MHz, 298 K): δ 177.3 (C), 177.0
(C), 136.1 (CH), 134.8 (CH), 132.2 (C), 132.1 (C), 132.0 (C), 131.9
(C), 130.3 (CH), 129.4, 129.0, 128.4 (CH), 128.3 (CH), 128.1 (CH),
127.5, 127.5, 127.4 (CH), 127.2 (CH), 126.3 (CH), 126.0 (CH), 125.9
(CH), 125.8 (CH), 124.4 (CH), 124.3 (CH), 121.8 (CH), 120.7 (CH),
53.0 (CH2), 52.4 (CH2), 47.1 (CH), 46.1 (CH), 45.7 (CH), 45.4 (CH)
ppm; MS (FAB+): m/z 340.1 (M+H+, 90%), 339.1 (M+, 100%), 307.1
(43%); MS (FAB): m/z 340.1 [M + H]+, 90%; 339.1 [M]+, 100%; 307.1,
43%; HRMS (FAB) calcd for C23H17NO2: 339.1259; obsd m/z
339.1259 [M]+. Anal. Calcd for C23H17NO2: C, 81.40; H, 5.05; N,
4.13. Found: C, 81.25; H, 5.06; N 4.05.
N-(2-Anthryl) Succinimide (2b). To a solution of cis-endo-
bicyclo[2.2.1]hept-5-ene-2,3- dicarboxylic anhydride (3)13 (0.136 g,
0.83 mmol) and 2-aminoanthracene (0.160 g, 0.83 mmol) in acetic acid
(6 mL) was added zinc acetate dihydrate (0.018 g, 0.08 mmol). The
reaction mixture was refluxed for 1.5 h. After cooling, the reaction
mixture was poured into iceÀwater (120 mL). The aqueous solution
was extracted with CH2Cl2 (20 mL Â 3), and the organic layers were
combined and washed with 0.5 M NaHCO3 aqueous solution (20 mL Â
3). The organic layer was dried over anhydrous MgSO4, filtered, and
evaporated into dryness to afford a brown solid. The crude product was
further purified by column chromatography on silica gel (CH2Cl2)
giving a pale brown solid of 2b (0.256 g, 91%): mp 218À220 °C
(CH2Cl2/EtOH); 1H NMR (CD2Cl2, 400 MHz, 298 K): δ 8.47 (d, J =
8 Hz, 2H), 8.07À8.03 (m, 3H), 7.81 (s, 1H), 7.52À7.51 (m, 2H), 7.19
(d, J = 8 Hz, 1H), 6.34 (s, 2H), 3.50 (s, 4H), 2.36 (d, J = 8 Hz, 1H), 2.09
(d, J = 8 Hz, 1H) ppm; 13C NMR (CDCl3, 100 MHz, 298 K): δ 176.9
(C), 134.7 (CH), 132.2 (C), 131.9 (C), 130.9 (C), 130.7 (C), 129.4
(CH), 128.8 (C), 128.2 (CH), 128.2 (CH), 126.9 (CH), 126.3 (CH),
125.9 (CH), 125.8 (CH), 125.8 (CH), 123.7 (CH), 52.3 (CH2), 45.9
(CH), 45.6 (CH) ppm; MS (FAB): m/z 339.1 [M]+, 100%; 307.1, 88%;
HRMS (FAB) calcd for C23H17NO2: 339.1259; obsd 339.1264 [M]+.
Anal. Calcd for C23H17NO2: C, 81.40; H, 5.05; N, 4.13. Found: C, 81.12;
H, 5.07; N, 4.19.
with wavelength of 365 nm for 2 h. The reaction gave a brown product
quantitatively, which displayed low solubility in most ordinary NMR
1
solvents: mp 335À337 °C. H NMR (CDCl3, 400 MHz, 25 °C): δ
7.82À7.73 (m, 4H), 7.62À7.31 (m, 24H), 6.86À6.82 (m, 4H),
6.64À6.61 (m, 4H), 6.42 (d, J = 8 Hz, 2H), 6.16 (d, J = 8 Hz, 2H),
4.73 (s, 2H), 3.93À3.86 (m, 6H), 3.47À3.44 (m, 4H), 3.37 (d, J = 12 Hz,
2H), 2.25 (d, J = 12 Hz, 2H), 1.97 (d, J = 12 Hz, 2H) ppm; MS (FAB):
m/z 1183.45 [M + H]+, 100%; HRMS (FAB) calcd for C86H59N2O4:
1183.4469; obsd m/z 1183.4478 [M + H]+.
’ ASSOCIATED CONTENT
S
Supporting Information. The proton and carbon NMR
b
spectra of 1, 2, 6, and 8; protonÀproton COSY spectra of 1a, 2a,
1
and 8; H NMR equilibration spectra of 1a and 2a; variable-
temperature 1H NMR spectra of 1b; the potential energy curves
of the CÀN bond rotational barriers; ORTEP drawings of N-
anthrylsuccinimides; crystal data/structure refinement for 1a, 2b,
2a, and 2b (with cif files); the UV spectra of 1a, 2b, 2a, 2b, and 6;
the table of UV absorption and fluorescence properties; the solid-
1
state absorption and emission spectra of dimer 8; H NMR
spectra of compound 1b and its photoadduct 8. This material is
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: tcchou@cyut.edu.tw.
’ ACKNOWLEDGMENT
This work was supported by a Theme Project from the
Institute of Chemistry, Academia Sinica, Taiwan.
’ REFERENCES
(1) Rushton, G. T.; Burns, W. G.; Lavin, J. M.; Chong, Y. S.;
Pellechia, P.; Shimizu, K. D. J. Chem. Educ. 2007, 84, 1499–1501.
(2) Chong, Y. S.; Carroll, W. R.; Burns, W. G.; Smith, M. D.;
Shimizu, K. D. Chem.—Eur. J. 2009, 15, 9117–9126.
(3) Tafazzoli, M.; Ziyaei-Halimjani, A.; Ghiasi, M.; Fattahi, M.; Saidi,
M. R. J. Mol. Struct. 2008, 886, 24–31.
(4) Kishikawa, K.; Yoshizaki, K.; Kohmoto, S.; Yamamoto, M.;
Yamaguchi, K.; Yamada, K. J. Chem. Soc., Perkin Trans. 1 1997,
1233–1239.
(5) Marshall, K.; Rosmarion, K.; Sklyut, O.; Azar, N.; Callahan, R.;
Rothchild, R. J. Fluorine Chem. 2004, 125, 1893–1907.
(6) Eto, M.; Setoguchi, K.; Harada, A.; Sugiyam, E.; Harano, K.
Tetrahedron Lett. 1998, 39, 9751–9754.
(7) Yoshitake, Y.; Misaka, J.; Setoguchi, K.; Abe, M.; Kawaji, T.; Eto,
M.; Harano, K. J. Chem. Soc., Perkin Trans. 2 2002, 1611–1619.
(8) Cao, H.; Diaz, D. I.; DiCesare, N.; Lakowicz, J. R.; Heagy, M. D.
Org. Lett. 2002, 4, 1503–1505.
(9) Head, N. J.; Oliver, A. M.; Look, K.; Lokan, N. R.; Jones, G. A.;
Paddon-Row, M. N. Angew. Chem., Int. Ed. 1999, 38, 3219–3222.
(10) Tyson, D. S.; Carbaugh, A. D.; Ilhan, F.; Santos-Pꢀerez, J.;
Meador, M. A. Chem. Mater. 2008, 20, 6595–6596.
(11) Grossmann, G.; Potrzebowski, M. J.; Olejniczak, S.; Ziꢀozkowska,
N. E.; Bujacz, G. D.; Ciesielski, W.; Prezdo, W.; Nazarov, V.; Golovko, V.
New J. Chem. 2003, 27, 1095–1101.
(12) Carroll, W. R.; Pellechia, P.; Shimizu, K. D. Org. Lett. 2008, 10,
3547–3550.
(13) Salvati, M. E.; Balog, A.; Wei, D. D.; Pickering, D.; Attar, R. M.;
Geng, J.; Rizzo, C. A.; Hunt, J. T.; Gottardis, M. M.; Weinmann, R.;
Martinez, R. Bioorg. Med. Chem. Lett. 2005, 15, 389–393.
(14) Chou, T.-C.; Liao, K.-C.; Lin, J.-J. Org. Lett. 2005, 7, 4843–4846.
Photodimerization of 1b, Formation of Dimer (8). The
pulverized crystalline of N-2-anthrylimide 1b was sandwiched in two
glass plates, and then was irradiated in a Rayonet photochemical reactor
6817
dx.doi.org/10.1021/jo200665v |J. Org. Chem. 2011, 76, 6813–6818