of chloride and lithium suggests that lithium is not a good
guest in the presence of chloride, and therefore, lithium is not
enhancing the binding of chloride as significantly, resulting in
only a minor increase in association constant and a DDG1 of
ꢁ0.15 kcal molꢁ1 (Table 1).
7 For some recent examples of amide-based tripodal receptors see:
J. V. Gavette, J. M. McGrath, A. M. Spuches, A. L. Sargent and
W. E. Allen, J. Org. Chem., 2009, 74, 3706–3710; I. Ravikumar,
P. S. Lakshminarayanan and P. Ghosh, Inorg. Chim. Acta, 2010,
363, 2886–2895; K. J. Winstanley, S. J. Allen and D. K. Smith,
Chem. Commun., 2009, 4299–4301.
8 For some recent examples of urea-based receptors see:
I. Ravikumar and P. Ghosh, Chem. Commun., 2010, 46,
1082–1084; C. Jia, B. Wu, S. Li, X. Huang, Q. Zhao, Q.-S. Li
and X.-J. Yang, Angew. Chem., Int. Ed., 2011, 50, 486–490;
I. Ravikumar, P. S. Lakshminarayanan, M. Arunachalam,
E. Suresh and P. Ghosh, Dalton Trans., 2009, 4160–4168.
Lithium ion appears to modulate anion binding exclusively
in this receptor: the presence of sodium21 had little to no effect
on the affinity of the halides toward 2 (Table 1). Although a
small downfield shift of ca. 3.6 ppm in the 31P NMR was
observed upon addition of ca. 30 equiv. of sodium tetra-
phenylborate to a solution of 2 and ca. 30 equiv. of TBA
tetraphenylborate19 only downfield shifting of the Hb resonance
was observed by 1H NMR (Fig. S34w). The magnitude of these
shifts follows the same trend as titrations of the halides and 2
suggesting that sodium is not coordinated to 2 as strongly as
lithium. The preferential binding of lithium over sodium and
the resulting enhancement of bromide binding is presumably
due to a combination of optimum size fit, ion pairing strength,
and differences in solvation.
9 For
a recent example of a thiourea-based receptor see:
N. Busschaert, P. A. Gale, C. J. E. Haynes, M. E. Light,
S. J. Moore, C. C. Tong, J. T. Davis and W. A. Harrell, Chem.
Commun., 2010, 46, 6252–6254.
10 A. W. Frank and D. J. Daigle, Phosphorus Sulfur Relat. Elem.,
1981, 10, 255–259; D. J. Daigle, T. J. Decuir, J. B. Robertson and
D. J. Darensbourg, 1,3,5-Triaz-7-Phosphatricyclo[3.3.1.13,7]-
Decane and Derivatives, John Wiley & Sons, Inc, 2007; B. J. Frost,
J. L. Harkreader and C. M. Bautista, Inorg. Chem. Commun., 2008,
11, 580–583; B. J. Frost, W. C. Lee, K. Pal, T. H. Kim,
D. VanDerveer and D. Rabinovich, Polyhedron, 2010, 29,
2373–2380; R. Huang and B. J. Frost, Inorg. Chem., 2007, 46,
10962–10964.
In conclusion, we have presented the use of a tris-
(aminomethyl)phosphine oxide as a scaffold for the neutral
ditopic tripodal receptor 2. This unusual receptor shows a
greater enhancement in the binding of bromide over chloride
and iodide in the presence of ca. 1 equiv. of a lithium source,
while sodium has little to no effect on anion association.
Determination of association constants of lithium and sodium
by 2ꢀXꢁ are currently underway as are investigations into
possible cooperative effects of other positively charged species
on anion binding.
11 P. H. Liao, B. W. Langloss, A. M. Johnson, E. R. Knudsen,
F. S. Tham, R. R. Julian and R. J. Hooley, Chem. Commun., 2010,
46, 4932–4934; R. J. Hooley, T. Iwasawa and J. Rebek, J. Am.
Chem. Soc., 2007, 129, 15330–15339; R. J. Hooley, P. Restorp,
T. Iwasawa and J. Rebek, J. Am. Chem. Soc., 2007, 129,
15639–15643; A. R. Renslo and J. Rebek, Angew. Chem., Int.
Ed., 2000, 39, 3281–3283; K. Goto and R. Okazaki, Liebigs
Ann./Recl., 1997, 2393.
12 P. E. Keck, S. L. McElroy, S. M. Strakowski and C. A. Soutullo,
J. Clin. Psychiatry, 2000, 61, 33–38; C. Lennkh and C. Simhandl,
Int. Clin. Psychopharmacol., 2000, 15, 1–11.
13 D. Aurbach, J. Power Sources, 2000, 89, 206–218; F. Lantelme,
H. Groult and N. Kumagai, Electrochim. Acta, 2000, 45,
3171–3180; W. H. Meyer, Adv. Mater., 1998, 10, 439–448.
14 D. R. Hunter, R. A. Haworth and H. A. Berkoff, J. Mol. Cell.
Cardiol., 1984, 16, 1083–1090; V. V. Kupriyanov, B. Xiang,
L. Yang and R. Deslauriers, NMR Biomed., 1997, 10, 271–276.
15 Crystal data for 2ꢀ2(H2O): C24H49N6O12P Mr = 644.66, 0.18 ꢂ
This research was supported by the NIH (GM087398-02)
and the University of Oregon (UO). O.B.B. acknowledges the
NSF for an Integrative Graduate Education and Research
Traineeships (DGE-0549503). The authors thank Professor
Brian J. Frost for helpful discussions on receptor design and
the synthesis of 1a.
%
0.05 ꢂ 0.02 mm, triclinic, P1 (N 2), a = 11.1651(19) A, b =
13.264(2) A, c = 13.360(2) A, a = 93.405(3)1, b = 109.288(3)1,
g = 111.239(3)1,V = 1704.3(5) A3, Z = 2, rcalcd = 1.256 g smꢁ1
,
Notes and references
m = 0.144 mmꢁ1, 2ymax = 50.001, T = 173(2)K, 16644 measured
reflections, 6003 independent reflections [Rint = 0.0446], 428
1 J. W. Steed and J. L. Atwood, Supramolecular Chemistry, John
Wiley and Sons, Ltd, West Sussex, 2009; J. L. Sessler, P. A. Gale
and W.-S. Cho, Anion Receptor Chemistry, Royal Society of
Chemistry, Cambridge, 2006.
2 D. M. Perreault, L. A. Cabell and E. V. Anslyn, Bioorg. Med.
Chem., 1997, 5, 1209–1220; K. J. Wallace, R. Hanes, E. Anslyn,
J. Morey, K. V. Kilway and J. Siegel, Synthesis, 2005, 2080–2083;
T. Benzing, T. Tjivikua, J. Wolfe and J. Rebek, Science, 1988, 242,
266–268.
3 G. Hennrich and E. V. Anslyn, Chem. Eur. J., 2002, 8, 2219–2224.
4 T. D. P. Stack, Z. G. Hou and K. N. Raymond, J. Am. Chem. Soc.,
1993, 115, 6466–6467.
5 Y. Tor, J. Libman, A. Shanzer, C. E. Felder and S. Lifson, J. Am.
Chem. Soc., 1992, 114, 6653–6661; S. Valiyayeettil, J. F. J.
Engbersen, W. Verboom and D. N. Reinhoudt, Angew. Chem.,
Int. Ed. Engl., 1993, 32, 900–901.
6 For recent examples of 21 amine-based receptors, see: M. Mazik
and M. Kuschel, Chem.–Eur. J., 2008, 14, 2405–2419; M. Mazik
and C. Sonnenberg, J. Org. Chem., 2010, 75, 6416–6423; A. Arda,
C. Venturi, C. Nativi, O. Francesconi, F. J. Canada, J. Jimenez-
Barbero and S. Roelens, Eur. J. Org. Chem., 2010, 64–71;
K. Ghosh and S. Adhikari, Tetrahedron Lett., 2008, 49, 658–663;
F. Fernandez-Trillo, E. Fernandez-Megia and R. Riguera, J. Org.
Chem., 2010, 75, 3878–3881.
parameters, R1 = 0.0476, wR2 = 0.1097 (with I 4 2s(I)), R1 =
0.0729, wR2 = 0.1320 (all data), GOF = 1.012, max/min residual
electron density +0.226/ꢁ0.294 e Aꢁ3
.
16 Crystal data for 3ꢀ3(DMSO): C30H36N9O19PS3, Mr = 953.83 , 0.80 ꢂ
0.02 ꢂ 0.01 mm, hexagonal, R3 (N 146), a = b = 26.969(4) A,
c = 4.7896(9) A, 901, 901, 1201, V = 3016.8(8) A3, Z = 3, rcalcd
=
1.575 g smꢁ1, m = 0.315 mmꢁ1, 2ymax = 50.001, T = 173(2)K,
8003 measured reflections, 2156 independent reflections [Rint
=
0.0874], 191 parameters, R1 = 0.0474, wR2 = 0.0701 (with
I 4 2s(I)), R1 = 0.0686, wR2 = 0.0768 (all data), GOF =
0.838, max/min residual electron density +0.251/ꢁ0.226 e Aꢁ3
.
17 Job’s method of continuous variations was used to confirm the 1 : 1
host : guest binding stochiometry (Fig. S7–S9w).
18 M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311–312.
19 No observable anion binding was observed with LiClO4 or
TBAClO4 indicating that the role of perchlorate is strictly as a
spectator anion.
20 The presence of excess TBA salt ensures that the observed chemical
shift is due to coordination and not changes in the ionic strength of
the receptor milieu.
21 NaB(Ph)4 was used as the source of sodium. 1H NMR titrations of
TBA tetraphenylborate with 2 furnished no measurable binding
event meaning the role of the tetraphenylborate anion is innocent.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7653–7655 7655