Bioconjugate Chemistry
ARTICLE
(10) Mikkelsen, N. E., Brannval, M., Virtanen, A., and Kirsebom,
L. A. (1999) Inhibition of RNAse P RNA cleavage by aminoglycosides.
Proc. Natl. Acad. Sci. U.S.A. 96, 6155–6160.
(11) Earnshaw, D. J., and Gait, M. J. (1998) Hairpin ribozyme
cleavage catalyzed by aminoglycoside antibiotics and the polya-
mine spermine in the absence of metal ions. Nucleic Acid Res. 26,
5551–5561.
(12) Tor, Y., Hermann, T., and Westhof, E. (1998) Deciphering
RNA recognition: aminoglycoside binding to the hammerhead ribo-
zyme. Chem. Biol. 5, 277–283.
(13) Stage, T. K., Hertel, K. J., and Uhlenbeck, O. C. (1995)
Inhibition of the hammerhead ribozyme by neomycin. RNA 1, 95–101.
(14) Cloudet-d’Orval, B., Stage, T. K., and Uhlenbeck, O. C. (1995)
Neomycin inhibition of the hammerhead ribozyme involves ionic
interactions. Biochemistry 34, 11186–11190.
cleaves HIV-1 TAR RNA inhibits viral replication. J. Med. Chem.
47, 4806–4809.
(32) Chaubey, B., Tripathi, S., Dꢀesire, J., Baussanne, I., Dꢀecout, J.-L.,
and Pandey, V. N. (2007) Mechanism of RNA cleavage catalyzed by
sequence specific polyamide nucleic acid-neamine conjugate. Oligonu-
cleotides 17, 302–313.
(33) Ketom€aki, K., and Virta, P. (2008) Synthesis of aminoglycoside
conjugates of 20-O-methyl oligoribonucleotides. Bioconjugate Chem.
19, 766–777.
(34) Kiviniemi, A., Virta, P., and L€onnberg, H. (2010) Solid-
supported synthesis and click conjugation of 40-C-alkyne functionalixed
oligodeoxyribonucleotides. Bioconjugate Chem. 21, 1890–1901.
(35) Kiviniemi, A., Virta, P., and L€onnberg, H. (2008) Utilization of
intrachain 40-C-azidomethylthymidine for preparation of oligodeoxyr-
ibonucleotide conjugates by click chemistry in solution and on a solid
support. Bioconjugate Chem. 19, 1726–1734.
(36) Mei, H., Xing, L., Cai, L., Hong-Wei, J., Zhao, P., Yang, Z.-J.,
Zhang, L.-R., and Zhang, L.-H. (2008) Studies on the synthesis of
neamine-dinucleosides and neamine-PNA conjugates and their interac-
tion with RNA. Bioorg. Med. Chem. Lett. 18, 5355–5358.
(37) Vickers, T., Baker, B. F., Cook, P. D., Zounes, M., Buckheit,
R. W., Jr., Germany, J., and Ecker, D. J. (1991) Inhibition of HIV-LTR
gene expression by oligonucleotides targeted to the TAR element.
Nucleic Acids Res. 19, 3359–3368.
(38) Ecker, D. J., Vickers, T. A., Bruice, T. W., Freier, S. M., Jenison,
R. D., Manoharan, M., and Zounes, M. (1992) Pseudo-half-knot
formation with RNA. Science 257, 958–961.
(39) Mestre, B., Arzumanov, A., Singh, M., Boulme, F., Litvak, S., and
Gait, M. J. (1999) Oligonucleotide inhibition of the interaction of HIV-1
Tat protein with the trans-activation responsive region (TAR) of HIV
RNA. Biochim. Biophys. Acta 1445, 86–98.
(15) Chia, J. S., Wu, H. L., Wang, H. W., Chen, D. S., and Chen, P. J.
(1997) Inhibition of hepatisis delta virus genomic ribozyme self-cleavage
by aminoglycosides. J. Biomed. Sci. 4, 208–216.
(16) Tok, J. B. H., Cho, J., and Rando, R. R. (1999) Aminoglycoside
antibiotics are able to specifically bind the 50-untranslated region of
thymidylate synthase messenger RNA. Biochemistry 38, 199–206.
(17) Mei, H.-Y., Galan, A. A., Halim, N. S., Mack, D. P., Morelan,
D. W., Sanders, K. B., Truong, H. N., and Czarnik, A. W. (1995)
Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by
aminoglycoside antibiotics. Bioorg. Med. Chem. Lett.e> 5, 27552760.
(18) Zapp, M. L., Stern, S., and Green, M. R. (1993) Small molecules
that selectively block RNA binding of HIV-1 rev protein inhibit rev
function and viral production. Cell 74, 969–978.
(19) Tam, V. K., Kwong, D., and Tor, Y. (2007) Fluorescent HIV-1
dimerization initiation site: design, properties, and use for ligand
discovery. J. Am. Chem. Soc. 129, 3257–3266.
(20) Ennifar, E., Paillart, J.-C., Bodlenner, A., Walter, P., Weibel,
J.-M., Aubertin, A.-M., Pale, P., Dumas, P., and Marquet, R. (2006)
Targeting the dimerization initiation site of HIV-1 RNA with aminogly-
cosides: from crystal to cell. Nucleic Acid Res. 34, 2328–2339.
(21) Arya, D. P., and Coffee, R. L., Jr. (2000) DNA triple helix
stabilization by aminoglycoside antibiotics. Bioorg. Med. Chem. Lett.
10, 1897–1899.
(40) Arzumanov, A., Walsh, A. P., Rajwanshi, V. K., Kumar, R.,
Wengel, J., and Gait, M. J. (2001) Inhibition of HIV-1 Tat-dependent
trans activation by steric block chimeric 20-O-methyl/LNA oligoribo-
nucleotides. Biochemistry 40, 14645–14654.
(41) Kota, S. K., and Balasubramanian, S. (2010) Cancer therapy via
modulation of micro RNA levels: a promising future. Drug Discovery
Today 15, 733–740.
(22) Arya, D. P., Xue, L., and Tennant, P. (2003) Combining the
best in triplex recognition: synthesis and nucleic acid binding of a BQQ-
neomycin conjugate. J. Am. Chem. Soc. 125, 8070–8071.
(42) Kiviniemi, A., and Virta, P. (2010) Characterization of RNA
invasion by 19F NMR spectroscopy. J. Am. Chem. Soc. 132, 8560–
8562.
(23) Arya, D. P., Coffee, R. L., Jr., and Charles, I. (2001) Neomycin
induced hybrid triplex formation. J. Am. Chem. Soc. 123, 11093–11094.
(24) Thomas, J., and Hergenrother, P. J. (2008) Targeting RNA with
small molecules. Chem. Rev. 108, 1171–1224.
(25) Wang, S., Huber, P. W., Cui, M., Czarnik, A. W., and Mei, H.-Y.
(1998) Binding of neomycin to the TAR element of HIV-1 RNA induces
dissociation of Tat protein by an allosteric mechanism. Biochemistry
37, 5549–5557.
(43) Barhate, N. B., Barhate, R. N., Cekan, P., Drobny, G., and Th.
Sigurdsson, S. (2008) A nonafluoro nucleoside as a sensitive 19F NMR
probe of nucleic acid conformation. Org. Lett. 10, 2745–2747.
(44) Kreutz, C., K€ahlig, H., Konrat, R., and Micura, R. (2005) Ribose
20-F labeling: A simple tool for the characterization of RNA secondary
structure equilibria by 19F NMR spectroscopy. J. Am. Chem. Soc.
127, 11558–11559.
(45) Olsen, G. L., Edwards, T. E., Deka, P., Varani, G., Sigurdsson, S.
Th., and Drobny, G. P. (2005) Monitoring tat peptide binding to TAR
RNA by solid-state 31P-19F REDOR NMR. Nucleic Acid Res.
33, 3447–3454.
(26) Blount, K. F., Zhao, F., Hermann, T., and Tor, Y. (2005)
Conformational constraint as a means for understanding RNA-amino-
glycoside specificity. J. Am. Chem. Soc. 127, 9818–9829.
(27) Zamecnik, P. C., and Stephenson, M. L. (1978) Inhibition of
Rous sarcoma virus replication and cell transformation by a specific
oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 75, 280–284.
(28) Stephenson, M. L., and Zamecnik, P. C. (1978) Inhibition of
Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleo-
tide. Proc. Natl. Acad. Sci. U.S.A. 75, 285–288.
(29) Napoli, S., Carbone, G. M., Catapano, C., Shaw, N., and
Arya, D. P. (2005) Neomycin improves cationic lipid-mediated
transfection of DNA in human cells. Bioorg. Med. Chem. Lett. 15,
3467–3469.
(30) Irudayasamy, C., Xi, H., and Arya, D. P. (2007) Sequence-
specific targeting of RNA with an oligonucleotide-neomycin conjugate.
Bioconjugate Chem. 18, 160–169.
(31) Riguet, E., Tripathi, S., Dꢀesire, J., Pandey, V. N., and Dꢀecout,
J.-L. (2004) A peptide nucleic acid-neamine conjugate that targets and
(46) Hennig, M., Munzꢀarova, M. L., Bermel, W., Scott, L. G.,
Sklenꢀar, V., and Williamson, J. R. (2006) Measurement of long-range
1H-19F scalar coupling constants and their glycosidic torsion depen-
dence in 5-fluoropyrimidine-substituted RNA. J. Am. Chem. Soc.
128, 5851–5858.
(47) Kreutz, C., K€ahlig, H., Konrat, R., and Micura, R. (2006) A
General approach for the identification of site-specific RNA binders by
19F NMR spectroscopy: Proof of concept. Angew. Chem., Int. Ed.
45, 3450–3453.
(48) Hennig, M., Scott, L. G., Sperling, E., Bermel, W., and Williamson,
J. R. (2007) Synthesis of 5-fluoropyrimidine nucleotides as sensitive NMR
probes of RNA structure. J. Am. Chem. Soc. 129, 14911–14921.
(49) Graber, D., Moroder, H., and Micura, R. (2008) 19F NMR
spectroscopy for the analysis of RNA secondary structure populations.
J. Am. Chem. Soc. 130, 17230.
1565
dx.doi.org/10.1021/bc200101r |Bioconjugate Chem. 2011, 22, 1559–1566