C. D. Savi et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4215–4219
4219
15. Jacobsen, J. A.; Major Jourden, J. L.; Miller, M. T.; Cohen, S. M. Biochim. Biophys.
Acta 2010, 1803, 72.
16. Li, N.-G.; Shi, Z.-H.; Tang, Y.-P.; Wang, Z.-J.; Song, S.-L.; Qian, L.-H.; Qian, D.-W.;
Duan, J.-A. Curr. Med. Chem. 2011, 18, 977.
17. Johnson, A. R.; Pavlovsky, A. G.; Ortwine, D. F.; Prior, F.; Man, C.-F.; Bornemeier,
D. A.; Banotai, C. A.; Mueller, W. T.; McConnell, P.; Yan, C.; Baragi, V.; Lesch, C.;
Roark, W. H.; Wilson, M.; Datta, K.; Guzman, R.; Han, H.-K.; Dyer, R. D. J. Biol.
Chem. 2007, 282, 27781.
18. Engel, C. K.; Pirard, B.; Schimanski, S.; Kirsch, R.; Habermann, J.; Klingler, O.;
Schlotte, V.; Weithmann, K. U.; Wendt, K. U. Chem. Biol. 2005, 12, 181.
19. In vitro fluorescent assay for matrix metalloproteinase family including for
example MMP-13: Recombinant human proMMP-13 may be expressed and
purified as described by Knauper et al. [V. Knauper et al., Biochem. J. 1996, 271,
1544]. The purified enzyme was used to monitor inhibitors of activity as
follows: purified proMMP-13 was activated using 1 mM amino phenyl
mercuric acid (APMA) for 20 h at 35 °C in assay buffer (0.1 M tris–HCl, pH7.5,
containing 0.1 M NaCl, 20 mM CaCl2, 0.02 mM ZnCl and 0.05% (w/v) brij 35
containing the synthetic substrate Mca-Pro-cyclohexyl-Ala-Gly-Nva-His-Ala-
Dap(Dnp)-NH2 (Bachem) in the presence or absence of inhibitors. Activity was
determined by measuring the fluorescence at ex328 nm and em393 nm. An
IC50 value for the inhibitor was calculated by plotting the raw data in a dose
response curve fitting application (e.g., Origin). A similar protocol with the
above substrate was used for expressed and purified pro MMP1, 2, 3, 7, 8, 9, 12,
14. Similar protocols were applied for measuring the activity of ADAM-17 and
ADAM-10 using the substrate dimethoxyfluorescein-Ser-Pro-Leu-Ala-Gln-Ala-
Val-Arg-ser-Ser-Arg-Cys-fluorescein (Bachem).
the profile was consistent in both rodent and human systems. The
series generally scaled well from in vitro (rat hepatocytes) to
rodent in vivo studies, with all tested compounds being within
two fold of experimental prediction. In vivo clearances were mod-
est and reasonable half lives were generated. Biliary and renal
clearances were negligible for tested compounds. This overall pro-
file make the series a useful start point for more detailed lead opti-
misation exploration.
The syntheses of key compounds are shown in Scheme 1. Inter-
mediate, 32, was used in palladium catalysed coupling processes to
generate alkyne and alkene linkers, which can be readily reduced
to the corresponding alkanes. Dehydration of the alcohol motif
(OR4) is achieved using acidic conditions to generate 31. The syn-
thesis of most of the exemplified quinuclidine intermediates has
previously been reported.32–34
We have identified a novel series of selective MMP13 inhibitors
and determined their binding mode through co-crystallisation
studies. Compounds exert their biological effects without interac-
tion with the catalytic zinc atom, which enables good levels of
selectivity over related enzyme family members to be achieved.
The series was subsequently progressed into lead optimisation
and these studies will be reported in the future.
20. Moy, F. J.; Chanda, P. K.; Chen, J. M.; Cosmi, S.; Edris, W.; Levin, J. I.; Powers, R. J.
Mol. Biol. 2000, 302, 671.
21. The model of compound 3 was built using Maestro molecular modelling
program, docked using Glide into MMP13 structure (PDB ID = 1xuc) and
overlay with compound 1 in Maestro. Glide and Maestro were licensed from
compound 3 was optimised in MMP13 protein using Szybki (MMFF94 force
22. Buttar, D.; Colclough, N.; Gerhardt, S.; MacFaul, P. A.; Phillips, S. D.; Plowright,
A.; Whittamore, P.; Tam, K.; Maskos, K.; Steinbacher, S.; Steuber, H. Bioorg. Med.
Chem. 2010, 18, 7486.
Acknowledgements
We acknowledge the work of Ben Goult in generating the NMR
information and Ken Page and Gillian Smith for the TDI data.
23. Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discov. Today 2004, 9, 430.
24. Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug. Discov. 2007, 6, 881.
25. The X-ray crystal ligand–protein structure of compound 24 (PDB ID = 2YIG) has
been deposited into the RCSB.
Supplementary data
Supplementary data associated with this article can be found, in
26. Coope, J. F.; Main, B. G. Tetrahedron: Asymmetry 1995, 1393, 6.
27. McGinnity, D. F.; Parker, A. J.; Soars, M.; Riley, R. J. Drug Metab. Dispos. 2000, 28,
1327.
References and notes
28. Soars, M. G.; Grime, K.; Sproston, J. L.; Webborn, P. J. H.; Riley, R. J. Drug Metab.
Dispos. 2007, 35, 859.
29. MacFaul, P. A.; Ruston, L.; Wood, J. M. Med. Chem. Commun. 2011, 2, 140.
1. Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. Chem. Rev. 1999, 99,
2735.
2. Hu, J.; Van den Steen, P. E.; Sang, Q.-X. A.; Opdenakker, G. Nat. Rev., Drug Discov.
2007, 6, 480.
30. The photolytic stability of compounds is assessed by irradiating 50 lM solution
of the compounds in phosphate buffer at pH 7 in the presence of 20% ethanol
co-solvent using a Hanau Suntest (Atlas Instruments) for up to 4 h. Any
changes to the parent compound are assessed by LC–UV–MS. Compounds with
measured half-lives of less than 30 min are regarded as being unstable.
31. MacFaul, P. A.; Morley, A. D.; Crawford, J. J. Bioorg. Med. Chem. Lett. 2009, 19,
1136.
3. Nuti, E.; Tuccinardi, T.; Rossello, A. Curr. Pharm. Des. 2007, 13, 2087.
4. Nagase, H.; Woessner, J. F., Jr. J. Biol. Chem. 1999, 274, 21491.
5. Nagase, H.; Visse, R.; Murphy, G. Cardiovasc. Res. 2006, 69, 562.
6. Gomez, D. E.; Alonso, D. F.; Yoshiji, H.; Thorgeirsson, U. P. Eur. J. Cell Biol. 1997,
74, 111.
7. Martel-Pelletier, J. Osteoarthritis Cartilage 1999, 7, 371.
8. Glodring, M. B.; Glodring, S. R. J. Cell Physiol. 2007, 213, 626.
9. Churg, A.; Wang, R. D.; Tai, H.; Wang, X.; Xie, C.; Dai, J.; Shapiro, S. D.; Wright, J.
L. Am. J. Respir. Crit. Care Med. 2003, 167, 1083.
10. Hautamaki, R. D.; Kobayashi, D. K.; Senior, R. M.; Shapiro, S. D. Science 1997,
277, 2002.
11. Coussens, L. M.; Fingleton, B.; Matrisian, L. M. Science 2002, 295, 2387.
12. Mitchell, P. G.; Magna, H. A.; Reeves, L. M.; Lopresti-Morrow, L. L.; Yocum, S. A.;
Rosner, P. J.; Geoghegan, K. F.; Hambor, J. E. J. Clin. Invest. 1996, 97, 761.
13. Bigg, H. F.; Rowan, A. D. Curr. Opin. Pharmacol. 2001, 1, 314.
14. Brown, P. D. Expert Opin. Inv. Drug 2000, 9, 2167.
32. Brown, G. R.; Clarke, D. S.; Foubister, A. J.; Freeman, S.; Harrison, P. J.; Johnson,
M. C.; Mallion, K. B.; McCormick, J.; McTaggart, F.; Reid, A. C.; Smith, G. J.;
Taylor, M. J. J. Med. Chem. 1996, 39, 2971.
33. Brown, G. R.; Hollinshead, D. M.; Stokes, E. S. E.; Clarke, D. S.; Eakin, M. A.;
Foubister, A. J.; Glossop, S. C.; Griffiths, D.; Johnson, M. C.; McTaggart, F.;
Mirrlees, D. J.; Smith, G. J.; Wood, R. J. Med. Chem. 1999, 42, 130.
34. Brown, G. R.; Foubister, A. J.; Freeman, S.; McTaggart, F.; Mirrlees, R. A. C.;
Smith, G. J.; Taylor, M. J.; Thomason, D. A.; Whittamore, P. R. O. Bioorg. Med.
Chem. Lett. 1997, 7, 597.