additional challenge of the C3ꢀC14 linkage increases the
complexity of any synthetic endeavor. A related structural
scaffold can be found in fastigiatine (3).4 The relative
stereochemistries of the eastern quinolizidine ring systems
are distinct from typical stereochemical combinations
found in related natural products such as cermizine D
Synthesis of cyclization precursor 11 isshowninScheme2.
0
The key C10 stereocenter was constructed from a Grignard
addition of organomagnesium species 1210 with the known
Ellman imine 1311 in good levels of diastereoselectivity and
chemical yield. Removal of the sulfoxamine under acid-
catalyzed conditions followed by Cbz protection revealed
the carbamate 15. Cross metathesis of alkene 15 with
crotonaldehyde (16) cleanly provided the enal 11. We have
previously shown that cross metathesis of monosubsti-
tuted alkenes with R,β-unsaturated carbonyl compounds
proceeds in higher chemical yield when the unsaturated
carbonyl compound contains a β-methyl substitution
(e.g., 16).3b,c,12
(4).5 In particular, the axially disposed C10 moiety creates
0
added synthetic challenges. To date, no synthetic endeav-
ors have been published toward himeradine A.6 Herein, we
disclose the synthesis of the eastern portion of himeradine
A and the development of a viable model coupling strategy
for incorporation of the C15ꢀC17 carbons including the
C17 stereogenic center.
Scheme 1. Retrosynthesis
Scheme 2. Synthesis of Cyclization Precursor
The key Lewis acid catalyzed intramolecular, hetero-
atomMichael additionisshowninScheme3.Wehadhypo-
0
0
thesized that the C8 and C10 stereogenic centers would
work in concert to direct facial attack on an R,β-unsatu-
rated oxonium ion, as shown in possible transition state
0
model 17. The planar carbamate at C10 should force the
Our retrosynthetic strategy is shown in Scheme 1. For the
polycyclic western portion of himeradine, we intend to
adapt our previously developed route to lycopodine for
the construction of the carbon framework.3b,c Compound 5
will be formed via a diastereoselective Overman rearrange-
ment7 of the trichloroimidate derived from alcohol 6. The
required C15 stereogenic center will be introduced through
an organozinc addition to an R,β-unsaturated aldehyde.
This aldehyde will be accessible in turn from a Juliaꢀ
KocienskiꢀBlakemore olefination8 with the known 1-phe-
nyl-1H-tetrazol-5-yl (PT) sulfone 89 and aldehyde 9 fol-
lowed by acid-catalyzed deacetalization with in situ alkene
migration. The quinolizidine ring system 9 will be formed
(5) Structure determination: (a) Morita, H.; Hiraswa, Y.; Shinzato,
T.; Kobayashi, J. Tetrahedron 2004, 60, 7015–7023. Total synthesis: (b)
Nishikawa, Y.; Kitajima, M.; Takayama, H. Org. Lett. 2008, 10, 1987–
1990. (c) Nishikawa, Y.; Kitajima, M.; Kogure, N.; Takayama, H.
Tetrahedron 2009, 65, 1608–1617.
(6) (a) Collett, N. D.; Carter, R. G. 241st NationalAmerican Chemical
Society Meeting, Anaheim, CA, March27ꢀ31, 2011, ORGN-400. (b)Saha,
M.; Carter, R. G. 241st National American Chemical Society Meeting,
Anaheim, CA, March 27ꢀ31, 2011, ORGN-263.
(7) (a) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597–599.
(b) Overman, L. E.; Carpenter, N. E. Org. React. 2005, 66, 1–107.
(c) Kitamoto, K.; Sampei, M.; Nakayama, Y.; Sato, T.; Chida, N. Org.
Lett. 2010, 12, 5756–5759.
(8) (a) Kocienski, P. J.; Bell, A.; Blakemore, P. R. Synlett 2000, 365–
366. (b) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563–
2585.
(9) Lear, M. J.; Hirama, M. Tetrahedron Lett. 1999, 40, 4897–900.
(10) Comins, D. L.; Libby, A. H.; Al-awar, R. S.; Foti, C. J. J. Org.
Chem. 1999, 64, 2184–2185.
0
0
via a N1 ꢀC2 lactamization strategy. The piperidine ring
system 10 will be constructed from a substrate-controlled,
intramolecular heteroatom Michael addition of enal 11.
(11) Tang, T. P.; Volkman, S. K.; Ellman, J. A. J. Org. Chem. 2001,
66, 8772–8778.
(12) Carlson, E. K.; Rathbone, L. K.; Yang, H.; Collett, N. D.;
Carter, R. G. J. Org. Chem. 2008, 73, 5155–5158.
(4) Structure determination: (a) Gerard, R. V.; MacLean, D. B.;
Fagianni, R.; Lock, C. J. Can. J. Chem. 1986, 64, 943–949. (b) Gerard,
R. V.; MacLean, D. B. Phytochemistry 1986, 25, 1143–1150. Total
synthesis: (c) Liau, B. B; Shair, M. D. J. Am. Chem. Soc. 2010, 132,
9594–9595.
(13) (a) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679–
3681. (b) Martin, R.; Murruzzu, C.; Pericas, M. A.; Riera, A. J. Org.
Chem. 2005, 70, 2325–2328. (c) Coombs, T. C.; Lushington, G. H.;
ꢀ
Douglas, J.; Aube, J. Angew. Chem., Int. Ed. 2011, 50, 2734–3737.
Org. Lett., Vol. 13, No. 15, 2011
4145