residue was purified by flash chromatography using petroleum
ether/ethyl acetate as eluent on alkalescent silica gel to give the
desired product.
Acknowledgements
We thank the NSF (NSF-20872052, NSF-20090443, NSF-
21072080), and the Fundamental Research Funds for the Central
Universities (lzujbky-2010-k09) for financial support.
Notes and references
1 (a) R. W. Carling, P. D. Leeson, A. M. Moseley, R. Baker, A. C. Foster,
S. Grimwood, J. A. Kemp and G. R. Marshall, J. Med. Chem., 1992,
35, 1942–1953; (b) P. D. Leeson, R. W. Carling, K. W. Moore, A. M.
Moseley, J. D. Smith, G. Stevenson, T. Chan, R. Baker, A. C. Foster,
S. Grimwood, J. A. Kemp, G. R. Marshall and K. Hoogsteen, J. Med.
Chem., 1992, 35, 1954–1968; (c) R. W. Carling, P. D. Leeson, A. M.
Moseley, J. D. Smith, K. Saywell, M. D. Trickelbank, J. A. Kemp, G. R.
Marshall, A. C. Foster and S. Grimwood, Bioorg. Med. Chem. Lett.,
1993, 3, 65–70; (d) K. M. Witherup, R. W. Ransom, A. C. Graham,
A. M. Bernard, M. J. Salvatore, W. C. Lumma, P. S. Anderson, S. M.
Pitzenberger and S. L. Varga, J. Am. Chem. Soc., 1995, 117, 6682–6685.
2 (a) R. Leardini, D. Nanni, A. Tundo, G. Zanardi and F. Ruggieri, J.
Org. Chem., 1992, 57, 1842–1848; (b) B. Crousse, J.-P. Be´gue´ and D.
Bonnet-Delpon, J. Org. Chem., 2000, 65, 5009–5013; (c) M.-S. Xie, X.-
H. Chen, Y. Zhu, B. Gao, L.-L. Lin, X.-H. Liu and X.-M. Feng, Angew.
Chem., Int. Ed., 2010, 49, 3799–3802; (d) H. Xu, S. J. Zuend, M. G.
Woll, Y. Tao and E. N. Jacobsen, Science, 2010, 327, 986–990.
3 (a) W.-B. Wang, S.-M. Lu, P.-Y. Yang, X.-W. Han and Y.-G. Zhou,
J. Am. Chem. Soc., 2003, 125, 10536–10537; (b) M. Rueping, A. P.
Antonchick and T. Theissmann, Angew. Chem., Int. Ed., 2006, 45,
3683–3686; (c) D.-W. Wang, X.-B. Wang, D.-S. Wang, S.-M. Lu, Y.-G.
Zhou and Y.-X. Li, J. Org. Chem., 2009, 74, 2780–2787; (d) Z.-Y. Han,
H. Xiao, X.-H. Chen and L.-Z. Gong, J. Am. Chem. Soc., 2009, 131,
9182–9183.
Fig. 1 X-Ray structure of compound 3e.
4 (a) A. R. Katritzky, S. Rachwal and B. Rachwal, Tetrahedron, 1996,
48, 15031–15070; (b) A. R. Katritzky and S. A. Belyakov, Aldrichim.
Acta, 1998, 31, 35–45; (c) A. R. Katritzky, X. Lan, J. Z. Yang and O.
V. Denisko, Chem. Rev., 1998, 98, 409–548; (d) S. Talukda, C.-T. Chen
and J.-M. Fang, J. Org. Chem., 2000, 65, 3148–3153.
5 (a) K. D. Raner and A. D. Ward, Aust. J. Chem., 1991, 44, 1749–1760;
(b) S. W. Youn, S. J. Pastine and D. Sames, Org. Lett., 2004, 6, 581–584.
6 (a) M. Ori, N. Toda, K. Takami, K. Tago and H. Kogen, Angew. Chem.,
Int. Ed., 2003, 42, 2540–2543; (b) M. Ueda, S. Kawai, M. Hayashi, T.
Naito and O. Miyata, J. Org. Chem., 2010, 75, 914–921.
7 (a) M. Lautens, E. Tayama and C. Herse, J. Am. Chem. Soc., 2005, 127,
72–73; (b) P. Thansandote, M. Raemy, A. Rudolph and M. Lautens,
Org. Lett., 2007, 9, 5255–5258.
8 H.-H. Lu, H. Liu, W. Wu, X.-F. Wang, L.-Q. Lu and W.-J. Xiao, Chem.–
Eur. J., 2009, 15, 2742–2746.
9 (a) N. T. Patil, H. Wu and Y. Yamamoto, J. Org. Chem., 2007, 72,
6577–6579; (b) Z.-Y. Han, H. Xiao, X.-H. Chen and L.-Z. Gong, J.
Am. Chem. Soc., 2009, 131, 9182–9183.
10 (a) S. Murarka, I. Deb, C. Zhang and D. Seidel, J. Am. Chem. Soc., 2009,
131, 13226–13227; (b) G.-H. Zhou and J.-L. Zhang, Chem. Commun.,
2010, 46, 6593–6595.
11 T. A. Crabb, L. M. Canfield and D. J. Bowen, J. Chem. Soc., Perkin
Trans. 1, 1994, 9–13.
Scheme 2 Plausible reaction mechanism.
include good substrate generality, mild conditions, environment-
friendly catalyst and easy availability of starting materials. Further
exploration of Lewis acid-catalyzed reactions to construct useful
structures is the future goal of our research group.
12 For recent reviews, see: (a) K. A. Jørgensen, Synthesis, 2003, 1117–1125;
(b) M. Bandini, A. Melloni and A. Umani-Ronchi, Angew. Chem., Int.
Ed., 2004, 43, 550–556; (c) T. B. Poulsen and K. A. Jørgensen, Chem.
Rev., 2008, 108, 2903–2915; (d) M. Rueping and B. J. Nachtsheim,
Beilstein J. Org. Chem., 2010, 6(No. 6). For recent selected examples, see:
(e) M. Rueping, B. J. Nachtsheim and W. Ieawsuwan, Adv. Synth. Catal.,
2006, 348, 1033–1037; (f) X. Deng, J. T. Liang, J. Liu, H. McAllister,
C. Schubert and N. S. Mani, Org. Process Res. Dev., 2007, 11, 1043–
1050; (g) P. Rubenbauer and T. Bach, Adv. Synth. Catal., 2008, 350,
1125–1130; (h) M. Davoust, J. A. Kitching, M. J. Fleming and M.
Lautens, Chem.–Eur. J., 2010, 16, 50–54.
Typical experimental procedure for FeCl3-mediated synthesis of
3a–3k, 4a–4f
˚
To a solution of 1 (1.2 mmol), 2 (0.4 mmol) and 4 A MS 50 mg
in dry anisole (3 mL) was added FeCl3 (19.5 mg, 0.12 mmol).
The mixture was stirred under argon at 60 ◦C. On completion
of the reaction as shown by TLC analysis, the reaction mixture
was filtered and partitioned between sat. aq. NaHCO3 and ethyl
acetate. The aqueous layer was further extracted with ethyl
acetate (3 ¥ 20 mL). The combined organic extracts was dried
over anhydrous Na2SO4, filtered, and concentrated in vacuo. The
13 (a) G. A. Olah, Friedel–Crafts Chemistry, Wiley, New York, 1973; (b) R.
M. Roberts, A. A. Khalaf, Friedel–Crafts Alkylation Chemistry, Marcel
Dekker, New York, 1984; (c) G. A. Olah, R. Krishnamurti, G. K. S.
5032 | Org. Biomol. Chem., 2011, 9, 5028–5033
This journal is
The Royal Society of Chemistry 2011
©