Scheme 2. Chiral γ-Butenolides via h-AAA Followed by RCM
Figure 1. Natural products with γ-butyrolactone rings.
Scheme 1. Cu-Catalyzed Hetero-Allylic Asymmetric
Scheme 3. Retrosynthesis of (-)-Whiskey Lactone, (-)-Cognac
Lactone, (-)-Nephrosteranic Acid, and (-)-Roccellaric Acid
Alkylation8b
(DKR), which offered the complete conversion of racemic
furanone into the single enantiomer of γ-butyrolactone.7b
Although a number of powerful methods have been de-
scribed,2 there is still a major incentive to develop efficient
catalytic asymmetric protocols toward butenolides. Recently
we reported an efficient catalyst system to accomplish
highly enantioselective Cu-catalyzed allylic alkylations
with Grignard reagents.8a Novel prospects were offered
by discovering that the transformation can also be per-
formed with allylic esters through hetero-allylic asym-
metric alkylation (h-AAA) with excellent enantiomeric
control (Scheme 1).8b,9 As shown in Scheme 2, the reaction
with cinnamyl ester 1 gives rise to compound 2 bearing two
olefinic moieties. The olefinic substrates will directly lead
to γ-butenolides by ring closing metathesis (RCM).10,11
Such a route could be a valuable alternative to current
methods.1a
Whiskey and cognac lactones12 are well-known perfume
compounds with a distinct aroma, bearing the γ-butyro-
lactone ring as the main structure. (-)-Nephrosteranic
acid and (-)-roccellaric acid13 are also naturally occurring
γ-butyrolactones, containing a carboxylic acid group in
the three position as their characteristic functionality.
Despite extensive synthetic efforts toward their total synthe-
sis using either chiral pool13a or chiral auxiliaries,13e there
are limited reports on efficient catalytic enantioselective
routes of these natural products.12,13
ꢀ
(8) (a) Lopez, F.; van Zijl, A. W.; Minnaard, A. J.; Feringa, B. L.
Chem. Commun. 2006, 409. (b) Geurts, K.; Fletcher, S. P.; Feringa, B. L.
J. Am. Chem. Soc. 2006, 118, 3801.
(9) For reviews, see: (a) Harutyunyan, S. R.; den Hartog, T.; Geurts,
K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
Here we present a catalytic enantioselective synthesis
of γ-butenolides via an h-AAA/RCM strategy. To further
demonstrate the utility of this protocol, we report the
concise total synthesis of (-)-whiskey lactone, (-)-cognac
lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid.
Asshowninthe retrosyntheticroute(Scheme 3), starting
from the inexpensive commercially available cinnamic acid
and acrolein,14 the allylic ester is readily obtained. The key
intermediate γ-butenolides could be prepared through the
h-AAA-RCM protocol.15 Thus the desired natural prod-
ucts (-)-nephrosteranic acid and (-)-roccellaric acid
would be possible to obtain after the conjugate addition
€
(b) Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M.
Chem. Rev. 2008, 108, 2796. (c) Teichert, J. F.; Feringa, B. L. Angew.
Chem., Int. Ed. 2010, 49, 2486.
(10) For reviews, see: (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem.
Res. 2001, 34, 18. (b) Monfette, S.; Fogg, D. E. Chem. Rev. 2009, 109,
3783.
(11) (a) Bassetti, M.; D’Annibale, A.; Fanfoni, A.; Minissi, F. Org.
Lett. 2005, 7, 1805. (b) Fujii, M.; Fukumura, M.; Hori, Y.; Akita, H.;
Nakamura, K.; Toriizuka, K.; Ida, Y. Tetrahedron Lett. 2006, 17, 2292.
(12) (a) Takahata, H.; Uchida, Y.; Momose, T. Tetrahedron Lett.
1994, 35, 4123. (b) Takahata, H.; Uchida, Y.; Momose, T. J. Org. Chem.
1995, 60, 5628. (c) Ito, K.; Yoshitake, M.; Katsuki, T. Tetrahedron 1996,
52, 3905. (d) Nishikori, H.; Ito, K.; Katsuki, T. Tetrahedron: Asymmetry
1998, 9, 1165. (e) Tsuboi, S.; Sakamoto, J.; Yamashita, H.; Sakai, T.;
Utaka, M. J. Org. Chem. 1998, 63, 1102.
(13) For selected examples of syntheses toward (-)-nephrosteranic
acid and (-)-roccellaric acid, see: (a) Mulzer, J.; Salimi, N.; Hartl, H.
Tetrahedron: Asymmetry 1993, 4, 457. (b) Bella, M.; Margarita, R.;
Orlando, C.; Orsini, M.; Parlanti, L.; Piancatelli, G. Tetrahedron Lett.
(14) (a) Lombardo, M.; Morganti, S.; Trombini, C. J. Org. Chem.
2003, 68, 997. (b) Lombardo, M.; Girotti, R.; Morganti, S.; Trombini, C.
Chem. Commun. 2001, 2310.
(15) For some consecutive AAA-RCM reactions, see: (a) Giacomina,
F.; Riat, D.; Alexakis, A. Org. Lett. 2010, 12, 1156. (b) Teichert, J. F.;
Zhang, S.; van Zijl, A. W.; Slaa, J. W.; Minnaard, A. J.; Feringa, B. L.
Org. Lett. 2010, 12, 4658.
€
2000, 41, 561. (c) Bohm, C.; Reiser, O. Org. Lett. 2001, 3, 1315.
(d) Jacobi, P.; Herradura, P. Can. J. Chem. 2001, 79, 1727. (e) Sibi,
M. P.; Liu, P.; Ji, J. G.; Hajra, S.; Chen, J. X. J. Org. Chem. 2002, 67,
1738. (f) Barros, M. T.; Maycock, C. D.; Ventura, M. R. Org. Lett. 2003,
€
€
5, 4097. (g) Chhor, R. B.; Nosse, B.; Sorgel, S.; Bohm, C.; Seitz, M.;
Reiser, O. Chem. Eur. J. 2003, 9, 260.
;
Org. Lett., Vol. 13, No. 5, 2011
949