Organic Letters
Letter
presence of TEMPO, galvinoxyl, or hydroquinone as a radical
scavenger led to no reaction, demonstrating that a radical
mechanism is operative (Scheme 5d). Furthermore, we found
that the disilane 52 could be generated from dimethyl-
(phenyl)silane 2 in 30% yield under the standard conditions
(Scheme 5e). To probe the role of disilane 52, we ran a
reaction using 52 and 1 as substrates under the standard
conditions. No product 3 was observed, which reveals that the
disilane 52 is not the intermediate on the way to 3.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
Based on the above observations, a plausible mechanism for
the visible-light-promoted hydrosilylation of alkynes is
proposed in Scheme 6. First, initiation occurs by visible-
ACKNOWLEDGMENTS
■
This work is financially supported by the National Natural
Science Foundation of China (21702230), the Natural Science
Foundation of Jiangsu Province (BK20160743), the Program
for Jiangsu Province Innovative Research Team, “Double First-
Class” Project of China Pharmaceutical University
(CPU2018GY35, CPU2018GF05), and the 111 Project
(B16046).
Scheme 6. Proposed Reaction Mechanism
REFERENCES
■
(1) (a) Chan, T. H.; Fleming, I. Synthesis 1979, 1979, 761.
(b) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
(c) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375. (d) Fleming,
I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063. (e) Curtis-
Long, M. J.; Aye, Y. Chem. - Eur. J. 2009, 15, 5402. (f) Szudkowska-
́
Fraţ czak, J.; Hreczycho, G.; Pawluc, P. Org. Chem. Front. 2015, 2, 730.
light-induced Mn−Mn bond homolysis, thus transforming
Mn2(CO)10 into ·Mn(CO)5.10 Subsequently, the resulting ·
Mn(CO)5 abstracts a hydrogen atom from the hydridic Si−H
bond to generate a silyl radical along with the formation of
HMn(CO)5. Finally, the addition of the silyl radical to the
alkyne delivers radical adducts A and B, which undergo
another HAT process to yield the desired hydrosilylation
product.6,15 This process allows the regeneration of ·Mn-
(CO)5, thereby sustaining the radical chain. The stereo-
chemistry for the formation of Z-vinylsilanes is likely set for
steric reasons in the step that includes the hydrogenolysis of A
and B as indicated in Scheme 6.6,16 Moreover, both a light on/
off experiment and quantum yield measurements (Φ = 2.6)
support a short radical chain propagation pathway (see the
In summary, we have documented that earth-abundant and
inexpensive manganese complexes act as catalysts for visible-
light-mediated hydrosilylation of alkynes. The mild protocol
proceeds with excellent control of regio- and stereoselectivity
and provides a range of valuable Z-vinylsilanes with yields up
to 98%. We also showed the potential of this chemistry for late-
stage functionalization of complex compounds. Reactions are
easy to conduct and exhibit good functional-group tolerance.
Moreover, the first visible-light-induced manganese-catalyzed
activation of Ge−H bonds for E-selective hydrogermylation of
alkynes was reported. All of these features make this protocol
highly practical. Further mechanistic studies and synthetic
application of this methodology are ongoing in our laboratory.
(2) (a) Hydrosilylation: A Comprehensive Review on Recent Advances;
Marciniec, B., Ed.; Springer: Berlin, 2009. (b) Trost, B. M.; Ball, Z. T.
Synthesis 2005, 2005, 853. (c) Lim, D. S. W.; Anderson, E. A. Synthesis
2012, 44, 983. (d) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
(3) For selected recent examples, see: (a) Kawasaki, Y.; Ishikawa, Y.;
Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2011, 133, 20712.
(b) Rooke, D. A.; Ferreira, E. M. Angew. Chem., Int. Ed. 2012, 51,
3225. (c) Sumida, Y.; Kato, T.; Yoshida, S.; Hosoya, T. Org. Lett.
2012, 14, 1552. (d) Ding, S.; Song, L.-J.; Chung, L. W.; Zhang, X.;
Sun, J.; Wu, Y.-D. J. Am. Chem. Soc. 2013, 135, 13835. (e) Ding, S.;
Song, L.-J.; Wang, Y.; Zhang, X.; Chung, L. W.; Wu, Y.-D.; Sun, J.
Angew. Chem., Int. Ed. 2015, 54, 5632. (f) Mutoh, Y.; Mohara, Y.;
Saito, S. Org. Lett. 2017, 19, 5204. (g) Zhao, X.; Yang, D.; Zhang, Y.;
Wang, B.; Qu, J. Org. Lett. 2018, 20, 5357.
(4) For selected recent examples, see: (a) Mo, Z.; Xiao, J.; Gao, Y.;
Deng, L. J. Am. Chem. Soc. 2014, 136, 17414. (b) Steiman, T. J.;
Uyeda, C. J. Am. Chem. Soc. 2015, 137, 6104. (c) Zuo, Z.; Yang, J.;
Huang, Z. Angew. Chem., Int. Ed. 2016, 55, 10839. (d) Guo, J.; Lu, Z.
Angew. Chem., Int. Ed. 2016, 55, 10835. (e) Challinor, A. J.; Calin, M.;
Nichol, G. S.; Carter, N. B.; Thomas, S. P. Adv. Synth. Catal. 2016,
358, 2404. (f) Teo, W. J.; Wang, C.; Tan, Y. W.; Ge, S. Angew. Chem.,
Int. Ed. 2017, 56, 4328. (g) Wen, H.; Wan, X.; Huang, Z. Angew.
Chem., Int. Ed. 2018, 57, 6319. (h) Wu, C.; Teo, W. J.; Ge, S. ACS
Catal. 2018, 8, 5896. (i) Zhang, S.; Ibrahim, J. J.; Yang, Y. Org. Lett.
2018, 20, 6265. (j) Li, R.-H.; An, X.-M.; Yang, Y.; Li, D.-C.; Hu, Z.-L.;
Zhan, Z.-P. Org. Lett. 2018, 20, 5023. (k) Zhou, Y.-B.; Liu, Z.-K.; Fan,
X.-Y.; Li, R.-H.; Zhang, G.-L.; Chen, L.; Pan, Y.-M.; Tang, H.-T.;
Zeng, J.-H.; Zhan, Z.-P. Org. Lett. 2018, 20, 7748. (l) Wu, G.;
Chakraborty, U.; von Wangelin, A. J. Chem. Commun. 2018, 54,
12322. (m) Nurseiit, A.; Janabel, J.; Gudun, K. A.; Kassymbek, A.;
Segizbayev, M.; Seilkhanov, T. M.; Khalimon, A. Y. ChemCatChem
2019, 11, 790.
ASSOCIATED CONTENT
* Supporting Information
■
(5) For a review on manganese-catalyzed hydrosilylation reactions,
see: Yang, X.; Wang, C. Chem. - Asian J. 2018, 13, 2307.
(6) Yang, X.; Wang, C. Angew. Chem., Int. Ed. 2018, 57, 923.
(7) For selected reviews, see: (a) Narayanam, J. M. R.; Stephenson,
C. R. J. Chem. Soc. Rev. 2011, 40, 102. (b) Xuan, J.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2012, 51, 6828. (c) Prier, C. K.; Rankic, D. A.;
MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (d) Hari, D. P.;
S
The Supporting Information is available free of charge on the
Experimental details and characterization data for the
̈
Konig, B. Angew. Chem., Int. Ed. 2013, 52, 4734. (e) Skubi, K. L.;
D
Org. Lett. XXXX, XXX, XXX−XXX