Organometallics
ARTICLE
30.2. 19F{1H} NMR (CD2Cl2): δ À152.5 (br s). Anal. Calcd for
C33H45BClF3KO6.5PPd(0.5THF): C, 48.02; H, 5.49. Found: C,
48.68; H, 5.70.
ethylene signal was not observed due to fast intermolecular ethylene
exchange. 31P{1H} NMR (CD2Cl2, 0 °C): δ 22.5. 19F{1H} NMR
(CD2Cl2, 0 °C): δ À149.7 (br s).
(PF)Pd(Me)(OEt2). 1H NMR (CD2Cl2, À60 °C): δ 7.69 (m, 1H,
H3-Ar), 7.44 (m, 11H, H-Ph and H-Ar), 7.21 (m, 1H, H-Ar), 6.84 (m,
1H, H-Ar), 3.74 (q, JHH = 7, 4H, OCH2CH3), 1.71 (t, 6H, JHH = 7,
OCH2CH3), 0.58 (s, 3H, PdCH3). 31P{1H} NMR (CD2Cl2, À60 °C):
δ 34.8. 19F{1H} NMR (CD2Cl2, À60 °C): δ À152.4 (br s). 13C{1H}
NMR (CD2Cl2, À40 °C): δ 133.6 (d, JCÀP = 12, C2-Ph), 132.9 (d, JCÀP
= 6, C-Ar), 132.7 (m, C-Ar), 130.88 (d, JCÀP = 2, C4-Ph), 130.7, 130.3
(C-Ar), 129.5 (d, JCÀP = 58), 128.6 (d, JCÀP = 11, C3-Ph), 127.5 (C-Ar),
70.2 (br s, Pd(OCH2CH3)2), 16.3 (br s, Pd(OCH2CH3)2), 2.7 (br s,
PdCH3); the C2-Ar resonance was not observed.
(PF)PdMe(col) (4). A flask was charged with (COD)PdMeCl
(0.10 g, 0.38 mmol) and 1 (0.14 g, 0.38 mmol). A solution of 2,4,6-
collidine (0.060 mL, 0.45 mmol) in CH2Cl2 (5 mL) was added, and the
mixture was stirred at 23 °C for 1 h to form a solution. The solution was
filtered, and the filtrate was taken to dryness under vacuum. The residue
was dissolved in benzene and filtered, and the filtrate was concentrated
to afford a pale yellow precipitate, which was collected and dried under
vacuum. The solid was recrystallized from CH2Cl2/Et2O to yield a white
solid. Yield: 0.14 g (64%). 1H NMR (CD2Cl2): δ 7.76 (dd, JHÀH = 7,
JHÀP = 3, 1H, H3-Ar), 7.58 (m, 4H, H2-Ph), 7.49 (m, 6H, H3-Ph and
H4-Ph), 7.39 (t, JHÀH = JHÀP = 7 Hz, 1H, H6-Ar), 7.20 (t, JHÀH = 7, 1H,
H4-Ar), 7.06 (s, 2H, col), 6.95 (m, 1H, H5-Ar), 3.10 (s, 3H, o-col-CH3),
2.35 (s, 3H, p-col-CH3), 0.53 (d, JHÀP = 2, 3H, PdCH3). 13C{1H} NMR
(CD2Cl2): δ 158.6 (C2,6-col), 151.4 (C4-col), 134.4 (d, JCÀP = 11,
C2-Ph), 133.4 (m, C3-Ar), 133.2 (m, C5-Ar), 131.7 (d, JCÀP = 47), 131.5
’ ASSOCIATED CONTENT
S
Supporting Information. Representative NMR spectra
b
and crystallographic data (CIF files). This material is available
(d, JCÀP = 52), 130.9 (d, JCÀP = 3, C4-Ph), 130.2 (C6-Ar), 128.9 (d, JCÀP
=
11, C3-Ph), 127.3 (d, JCÀP = 8, C4-Ar), 124.1 (d, JCÀP = 3, C3-col), 26.2
(o-col-CH3), 21.0 (p-col-CH3), À2.9 (qd, JCÀF = 12, JCÀP = 3, PdCH3)
(C2-Ar resonance was not observed). 11B{1H} NMR (CD2Cl2): δ 2.6
(br s). 31P{1H} NMR (CD2Cl2): δ 29.0. 19F{1H} NMR (CD2Cl2):
δ À157.3 (br s). Anal. Calcd for C27H28BF3NPPd: C, 56.72; H, 4.94.
Found: C, 56.48; H, 5.09.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: rfjordan@uchicago.edu.
(PF)PdMe(py)2 (6). Single crystals of 6 were obtained by slow
diffusion of Et2O into a solution of 4 in pyridine at 23 °C. Due to the
rapid equilibrium between 5 and 6, NMR analysis of 6 performed in
pyridine-d5 solution and therefore signals for coordinated pyridine were
not observed. 1H NMR (pyridine-d5): δ 8.87 (m, 1H, H3-Ar), 7.69 (br s,
4H, H2-Ph), 7.57 (m, 1H, H-Ar), 7.31 (m, 2H, H4-Ph), 7.29 (m, 1H, H-
Ar), 7.20 (br s, 1H, H-Ar), 7.16 (br s, 4H, H3-Ph), 0.91(d, JHÀP = 3, 3H,
PdCH3). 13C{1H} NMR (pyridine-d5): δ 136.6 (m, C3-Ar), 134.9 (d,
JCÀP = 48), 132.1 (d, J = 7, C-Ar), 131.5 (d, JCÀP = 54), 130.0 (C4-Ph),
130.0 (C-Ar), 128.5 (d, JCÀP = 10, C3-Ph), 126.4 (d, JCÀP = 9, C-Ar), 2.3
(d, JCÀP = 6, PdCH3); the C2-Ph peaks overlap with the solvent peaks
and C2-Ar resonance was not observed. 31P{1H} NMR (pyridine-d5): δ
42.9 (q, JPÀF = 11). 19F{1H} NMR (pyridine-d5): δ À131.1 (br s).
11B{1H} NMR (pyridine-d5): δ 4.4 (br s).
’ ACKNOWLEDGMENT
This work was supported by the National Science Foundation
(CHE-0911180).
’ REFERENCES
(1) (a) Drent, E.; Dijk, R.; Ginkel, R.; Oort, B.; Pugh, R. I. Chem.
Commun. 2002, 744.(b) Drent, E.; Pello, D. H. L. Eur. Pat. 0632084,
1995. (c) Kochi, T.; Yoshimura, K.; Nozaki, K. Dalton Trans. 2006, 25.
(d) Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F. Organometallics 2007,
26, 6624. (e) Skupov, K. M.; Marella, P. R.; Simard, M.; Yap, G. P. A.;
Allen, N.; Conner, D.; Goodall, B. L.; Claverie, J. P. Macromol. Rapid
Commun. 2007, 28, 2033. (f) Kochi, T.; Noda, S.; Yoshimura, K.;
Nozaki, K. J. Am. Chem. Soc. 2007, 129, 8948. (g) Luo, S.; Vela, J.; Lief,
G. R.; Jordan, R. F. J. Am. Chem. Soc. 2007, 129, 8946. (h) Weng, W.;
Sheng, Z.; Jordan, R. F. J. Am. Chem. Soc. 2007, 129, 15450.
(i) Guironnet, D.; Roesle, P.; R€unzi, T.; G€otter-Schnetmann, I.; Meck-
ing, S. J. Am. Chem. Soc. 2009, 131, 422. (j) Noda, S.; Nakamura, A.;
Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc.
2009, 131, 14088. (k) Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K.
J. Am. Chem. Soc. 2009, 131, 14606. (l) R€unzi, T.; Fr€oehlich, D.;
Mecking, S. J. Am. Chem. Soc. 2010, 132, 17690. (m) Drent, E.; van Dijk,
R.; van Ginkel, R.; van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 964.
(n) Hearley, A. K.; Nowack, R. J.; Rieger, B. Organometallics 2005,
24, 2755. (o) Bettucci, L.; Bianchini, C.; Claver, C.; Suarez Eduardo,
J. G.; Ruiz, A.; Meli, A.; Oberhauser, W. Dalton Trans. 2007, 5590.
(p) Newsham, D. K.; Borkar, S.; Sen, A.; Conner, D. M.; Goodall, B. L.
Organometallics 2007, 26, 3636. (q) Nozaki, K.; Kusumoto, S.; Noda, S.;
Kochi, T.; Chung, L. W.; Morokuma, K. J. Am. Chem. Soc. 2010, 132,
16030.
(2) For reviews, see: (a) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev.
2009, 109, 5215. (b) Andreas, B.; Mecking, S. Angew. Chem., Int. Ed.
2008, 47, 2538.
(3) Nagai, Y.; Kochi, T.; Nozaki, K. Organometallics 2009, 28, 6131.
(4) Reisinger, C. M.; Nowack, R. J.; Volkmer, D.; Rieger, B. Dalton
Trans. 2007, 272.
(5) Gott, A. L.; Piers, W. E.; McDonald, R.; Parvez, M. Inorg. Chim.
Acta 2011, 369, 180.
(6) Porcel, S.; Bouhadir, G.; Saffon, N.; Maron, L.; Bourissou, D.
Angew. Chem., Int. Ed. 2010, 49, 6186.
1
(PF)Pd(Et)(col) (7). H NMR (CD2Cl2): δ 7.75 (dd, JHÀH = 7,
JHÀP = 3, 1H, H3-Ar), 7.63 (m, 4H, H2-Ph), 7.50 (m, 6H, H3-Ph and H4-
Ph), 7.40 (m, 1H, H-Ar), 7.21 (m, 1H, H-Ar), 7.07 (s, 2H, col), 7.06
(m, 1H, H-Ar), 3.17 (s, 6H, o-col-Me), 2.36 (s, 3H, p-col-Me), 1.63 (qd,
JHÀH = 7, JHÀP = 5, 2H, Pd-CH2CH3), 0.25 (m, JHÀH = 7, JHÀP = 4,
JHÀF = 2, 3H, Pd-CH2CH3). 31P{1H} NMR (CD2Cl2): δ 29.2. 19F{1H}
NMR (CD2Cl2): δ À155.7 (br s).
(PF)PdMe(ethylene) (8). 1H NMR (CD2Cl2, À40 °C, in presence
of 2.2 equiv of free ethylene): δ 7.48 (m, 2H, H-Ph), 7.41 (m, 9H, H-Ph
and H-Ar), 7.25 (t, JHH = 7, 1H, H-Ar), 6.93 (m, 1H, H-Ar), 5.43
(coordinated and free ethylene), 0.70 (s, 3H, Pd-CH3); the H3-Ar
resonances overlap with the [B(3,5-(CF3)2-C6H3)4]À signals. 13C{1H}
NMR (CD2Cl2, À40 °C, in presence of 2.2 equiv of free ethylene): δ
133.9 (d, JCÀP = 12, C2-Ph), 133.3 (C-Ar), 132.6 (m, C-Ar), 131.1 (C4-
Ph), 130.3 (C-Ar), 129.8 (d, JCÀP = 49), 129.0, 128.7 (d, JCÀP = 11, C3-
Ph), 127.8 (d, JCÀP = 7, C-Ar), 119 (br s, coordinated and free ethylene;
this resonance correlates with the 1H NMR ethylene resonance in the
HMQC spectrum), 4.5 (m, PdCH3); the C2-Ar resonance was not
observed. 31P{1H} NMR (CD2Cl2, À20 °C): δ 22.2. 19F{1H} NMR
(CD2Cl2, À20 °C): δ À151.5 (br s).
(PF)Pd(Et)(ethylene) (9). 1H NMR (CD2Cl2, 0 °C, in the
presence of 66 equiv of free ethylene): δ 7.48 (m, 11H, H-Ph and H-
Ar), 7.29 (t, JHH = 7, 1H, H-Ar), 7.19 (m, 1H, H-Ar), 1.83 (p, JHÀH = 7,
JHÀP = 7, 2H, PdCH2CH3), 0.42 (m, 3H, PdCH2CH3); the H3-Ar
resonances overlap with the [B(3,5-(CF3)2-C6H3)4]À signals; the
4255
dx.doi.org/10.1021/om200472x |Organometallics 2011, 30, 4250–4256