Journal of the American Chemical Society
Communication
Ladyman, M. K.; Temple, T.; Dossi, E. Primary alkyl phosphine-
borane polymers: Synthesis, low glass transition temperature, and a
predictive capability thereof. Macromolecules 2017, 50 (23), 9239−
9248. (h) Press, E. M.; Marro, E. A.; Surampudi, S. K.; Siegler, M. A.;
Tang, J. A.; Klausen, R. S. Synthesis of a Fragment of Crystalline
Silicon: Poly(Cyclosilane). Angew. Chem., Int. Ed. 2017, 56 (2), 568−
572. (i) Thiedemann, B.; Gliese, P. J.; Hoffmann, J.; Lawrence, P. G.;
tion, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73,
61−122.
(7) Zhang, F.; Zhang, S.; Pollack, S. F.; Li, R.; Gonzalez, A. M.; Fan,
J.; Zou, J.; Leininger, S. E.; Pavía-Sanders, A.; Johnson, R.; Nelson, L.
D.; Raymond, J. E.; Elsabahy, M.; Hughes, D. M. P.; Lenox, M. W.;
Gustafson, T. P.; Wooley, K. L. Improving paclitaxel delivery: in vitro
and in vivo characterization of PEGylated polyphosphoester-based
nanocarriers. J. Am. Chem. Soc. 2015, 137 (5), 2056−2066.
(8) (a) Rashchi, F.; Finch, J. A. Polyphosphates: A review their
chemistry and application with particular reference to mineral
processing. Miner. Eng. 2000, 13 (10−11), 1019−1035. (b) Omelon,
S. J.; Grynpas, M. D. Relationships between Polyphosphate
Chemistry, Biochemistry and Apatite Biomineralization. Chem. Rev.
2008, 108 (11), 4694−4715. (c) Liu, G.; Chen, W.; Yu, J. A novel
process to prepare ammonium polyphosphate with crystalline form II
and its comparison with melamine polyphosphate. Ind. Eng. Chem.
Res. 2010, 49 (23), 12148−12155. (d) Morrissey, J. H.; Choi, S. H.;
Smith, S. A. Polyphosphate: an ancient molecule that links platelets,
coagulation, and inflammation. Blood 2012, 119 (25), 5972−5979.
̈
Sonnichsen, F. D.; Staubitz, A. High molecular weight poly(N-methyl-
B-vinylazaborine) − a semi-inorganic B−N polystyrene analogue.
Chem. Commun. 2017, 53 (53), 7258−7261. (j) Duck, K.; Rawe, B.
̈
W.; Scott, M. R.; Gates, D. P. Polymerization of 1-Phosphaisoprene:
Synthesis and Characterization of a Chemically Functional
Phosphorus Version of Natural Rubber. Angew. Chem., Int. Ed.
̈
2017, 56 (32), 9507−9511. (k) Pandey, S.; Lonnecke, P.; Hey-
Hawkins, E. Phosphorus−Boron-Based Polymers Obtained by
Dehydrocoupling of Ferrocenylphosphine−Borane Adducts. Eur. J.
Inorg. Chem. 2014, 2014 (14), 2456−2465. (l) Resendiz-Lara, D. A.;
Stubbs, N. E.; Arz, M. I.; Pridmore, N. E.; Sparkes, H. A.; Manners, I.
Boron-nitrogen main chain analogues of polystyrene: poly(B-aryl)-
aminoboranes via catalytic dehydrocoupling. Chem. Commun. 2017,
53 (85), 11701−11704. (m) De Albuquerque Pinheiro, C. A.;
Roiland, C.; Jehan, P.; Alcaraz, G. Solventless and Metal-Free
Synthesis of High-Molecular-Mass Polyaminoboranes from Diisopro-
pylaminoborane and Primary Amines. Angew. Chem., Int. Ed. 2018, 57
(6), 1519−1522. (n) Adams, G. M.; Colebatch, A. L.; Skornia, J. T.;
McKay, A. I.; Johnson, H. C.; Lloyd-Jones, G. C.; Macgregor, S. A.;
Beattie, N. A.; Weller, A. S. Dehydropolymerization of H3B·NMeH2
To Form Polyaminoboranes Using [Rh(Xantphos-alkyl)] Catalysts. J.
Am. Chem. Soc. 2018, 140 (4), 1481−1495. (o) Parke, S. M.; Hupf,
E.; Matharu, G. K.; de Aguiar, I.; Xu, L.; Yu, H.; Boone, M. P.; de
Souza, G. L. C.; McDonald, R.; Ferguson, M. J.; He, G.; Brown, A.;
Rivard, E. Aerobic Solid State Red Phosphorescence from
Benzobismole Monomers and Patternable Self-Assembled Block
Copolymers. Angew. Chem., Int. Ed. 2018, 57 (45), 14841−14846.
̈
(9) (a) Michaelis, A.; Rothe, F. Uber die den Nitroverbindungen
entsprechenden Phosphorderivate. Ber. Dtsch. Chem. Ges. 1892, 25,
1747−1752. (b) Cherbuliez, E.; Baehler, B.; Hunkeler, F.; Rabinowitz,
J. Recherches sur la formation et la transformation des esters XXVIII.
Sur la phosphonylation des alcools par les oxydes phosphoniques.
Helv. Chim. Acta 1961, 44 (6), 1812−1815. (c) Moedritzer, K.
Synthesis and Properties of Phosphinic and Phosphonic Acid
Anhydrides. J. Am. Chem. Soc. 1961, 83 (21), 4381−4384. (d) Baer,
E.; Sarma, G. R. Phosphonolipids. XII. Synthesis of phosphonolipid
metabolites. L-alpha-glyceryl(2-aminoethyl) phosphonate. Can. J.
Biochem. 1967, 45 (11), 1755−1761. (e) Bracher, S.; Cadogan, J. I.
G.; Gosney, I.; Yaslak, S. The generation and trapping of a monomeric
aryldioxophosphorane (‘metaphosphonate’). J. Chem. Soc., Chem.
Commun. 1983, 857−858. (f) Kobayashi, S.; Chow, T. Y.; Kawabata,
H.; Saegusa, T. Ring-opening copolymerization of 2,4-bisphenyl-
1,3,2,4-dioxadiphosphetane-2,4-dioxide with oxetane via zwitterion
intermediates. Polym. Bull. 1986, 16 (4), 269−276. (g) Ueda, M.;
Honma, T. Synthesis of polyamides by direct polycondensation with
phenylphosphonic anhydride as an activating agent. Makromol. Chem.
1989, 190 (7), 1507−1514. (h) Fuchs, S.; Schmidbaur, H.
Phosphonic Acid Anhydrides [RPO2]n: Oligomerization and
Structure. Z. Naturforsch., B: J. Chem. Sci. 1995, 50b, 855−858.
(10) Diemert, K.; Kuchen, W.; Poll, W.; Sandt, F. A Convenient
Synthesis of Phosphonic Anhydrides − Trimers [RPO2]3 (R = tert
Butyl, 2 Methylphenyl, 2,4,6 Trimethylphenyl): Their Structures and
Reaction Products. Eur. J. Inorg. Chem. 1998, 1998 (3), 361−366.
(11) Hettstedt, C.; Unglert, M.; Mayer, R. J.; Frank, A.;
Karaghiosoff, K. Methoxyphenyl Substituted Bis(picolyl)phosphines
and Phosphine Oxides. Eur. J. Inorg. Chem. 2016, 2016 (9), 1405−
1414.
̈
(p) Meng, B.; Ren, Y.; Liu, J.; Jakle, F.; Wang, L. p-π Conjugated
Polymers Based on Stable Triarylborane with n-Type Behavior in
Optoelectronic Devices. Angew. Chem., Int. Ed. 2018, 57 (8), 2183−
2187.
(3) Mark, J. E.; Schaefer, D. W.; Lin, G. The Polysiloxanes; Oxford
University Press: New York, 2015.
(4) Cherbuliez, E.; Weber, G.; Rabinowitz, J. Note sur les anhydrides
́
́
et monoesters methanephosphoniques et dodecanephosphoniques.
Helv. Chim. Acta 1963, 46 (6), 2461−2464.
(5) (a) Clapp, C. H.; Westheimer, F. H. Monomeric methyl
metaphosphate. J. Am. Chem. Soc. 1974, 96 (21), 6710−6714.
(b) Sigal, I.; Loew, L. A phosphorus analog of α-pyrone and evidence
for monomeric mesitylmetaphosphonate. J. Am. Chem. Soc. 1978, 100
(20), 6394−6398. (c) Quin, L. D. Practical aspects of the chemistry
of metaphosphates and other transient dioxophosphoranes. Coord.
Chem. Rev. 1994, 137, 525−559.
(12) (a) Wissmann, H.; Kleiner, H.-J. New Peptide Synthesis.
Angew. Chem., Int. Ed. Engl. 1980, 19 (2), 133−134. (b) Basavaprabhu;
Vishwanatha, T. M.; Panguluri, N. R.; Sureshbabu, V. V. Propane-
phosphonic Acid Anhydride (T3P®) - A Benign Reagent for Diverse
Applications Inclusive of Large-Scale Synthesis. Synthesis 2013, 45
(12), 1569−1601. (c) Pizova, H.; Bobal, P. An optimized and scalable
synthesis of propylphosphonic anhydride for general use. Tetrahedron
Lett. 2015, 56 (15), 2014−2017.
(6) (a) Ranganathan, T.; Zilberman, J.; Farris, R. J.; Coughlin, E. B.;
Emrick, T. Synthesis and Characterization of Halogen-Free Antiflam-
mable Polyphosphonates Containing 4,4’-Bishydroxydeoxybenzoin.
Macromolecules 2006, 39 (18), 5974−5975. (b) Chen, L.; Wang, Y.-Z.
Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for
Polymers. Materials 2010, 3 (10), 4746−4760. (c) Monge, S.;
Canniccioni, B.; Graillot, A.; Robin, J.-J. Phosphorus-containing
polymers: a great opportunity for the biomedical field. Biomacromo-
lecules 2011, 12 (6), 1973−1982. (d) Penczek, S.; Pretula, J. B.;
Kaluzynski, K.; Lapienis, G. Polymers with Esters of Phosphoric Acid
Units: From Synthesis, Models of Biopolymers to Polymer −
Inorganic Hybrids. Isr. J. Chem. 2012, 52 (3−4), 306−319.
(e) Montembault, V.; Fontaine, L. In Phosphorus-Based Polymers:
From Synthesis to Applications; Monge, S., David, G., Eds.; The Royal
Society of Chemistry: Cambridge, 2014; Chapter 6, pp 97−124.
(f) Steinbach, T.; Wurm, F. R. Poly(phosphoester)s: A New Platform
for Degradable Polymers. Angew. Chem., Int. Ed. 2015, 54 (21),
6098−6108. (g) Bauer, K. N.; Tee, H. T.; Velencoso, M. M.; Wurm,
F. R. Main-chain poly(phosphoester)s: History, syntheses, degrada-
̈
̈
̈
(13) (a) Langheld, K. Uber Metaphosphorsaure athylester und
dessen Anwendung in der organischen Chemie. Ber. Dtsch. Chem. Ges.
1910, 43 (2), 1857−1860. (b) Burkhardt, G.; Klein, M. P.; Calvin, M.
The Structure of the So-Called “Ethyl Metaphosphate” (Langheld
Ester). J. Am. Chem. Soc. 1965, 87 (3), 591−596. (c) van Wazer, J. R.;
Norval, S. The Molecular Constitution of Methyl and Ethyl
Polyphosphate and the Langheld Esters. J. Am. Chem. Soc. 1966, 88
(19), 4415−4423. (d) Ogata, N.; Sanui, K.; Harada, M. Direct
polycondensation of nylon salts by polyphosphates and imidazole. J.
Polym. Sci., Polym. Chem. Ed. 1979, 17 (8), 2401−2411. (e) Dixon, L.
A. Polyphosphate Ester. In e-EROS Encyclopedia of Reagents for
́
Organic Synthesis; Wiley-VCH: Chichester, UK, 2001. (f) Lopez, S. E.;
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX