Journal of the American Chemical Society
ARTICLE
Scheme 4. Synthesis of a Densely Functionalized Pyrana
Crabtree, R. H. J. Am. Chem. Soc. 2010, 132, 12550. (h) Dick, A. R.; Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (i) Zhang, Y.-H.;
Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.
(2) For examples of late-state CꢀH oxidations in total synthesis, see:
(a) Stang, E. M.; White, M. C. Nat. Chem. 2009, 1, 547. (b) Hinmann, A.;
DuBois, J. J. Am. Chem. Soc. 2003, 125, 11510. (c) Davies, H. M. L.; Dai,
X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2485. (d) Kim, J.;
Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324, 238. (e) Nicolaou,
K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.;
Claibourne, C. F.; Reynaud, J.; Couladouros, E. A.; Paulvannan, K.;
Sorenson, E. J. Nature 1994, 367, 630. (f) Wender, P. A.; Jesudason,
C. D.; Nakhira, H.; Tamura, N.; Tebe, A. L.; Ueno, Y. J. J. Am. Chem. Soc.
1997, 119, 12976.
(3) For an example of CꢀH activation/Cope rearrangement for
forming carbocyclic skeletons, see: (a) Davies, H. M. L.; Jin, Q. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5472. (b) Hansen, J.; Gregg, T. M.;
Ovalles, S. R.; Lian, Y.; Autschbach, J.; Davies, H. M. L. J. Am. Chem. Soc.
2011, 133, 5076.
a Conditions: (a) NaH (3.0 equiv), BrAcOH (1.1 equiv), THF/DMF
0 °C to RT (54%); (b) 10% 1, 10% Cr(salen)Cl, BQ (2.0 equiv),
dioxane, 65 °C (56% of >20:1 dr anti-diastereomer; 73%, 3:1 crude dr);
(c) (1) LiHMDS (2.0 equiv), 1:1 v/v TMSCl/Et3N, THF, ꢀ78 °C then
reflux in toluene, (2) MeI (3.0 equiv), K2CO3 (3.0 equiv), DMF, RT
(82%); (d) LiAlH4 (2.0 equiv), THF, 0 °C; (e) BnBr (2.0 equiv), NaH
(2.0 equiv), DMF, 0 °C to RT; (f) 1 N HCl, THF, RT (60%, 3 steps).
(4) Washida, K.; Abe, N.; Sugiyama, Y.; Hirota, A. Biosci. Biotechnol.
Biochem. 2009, 73, 1355.
(5) (a) Burke, S. D.; Armistead, D. M.; Schoenen, F. J.; Fevig, J. M.
Tetrahedron 1986, 42, 2787. For the dioxanone to pyran approach
previously applied to total synthesis, see:(b) Burke, S. D.; Sametz, G. M.
Org. Lett. 1999, 1, 71. (c) Burke, S. D.; Piscopio, A. D.; Kort, M. E.;
Matulenko, M. A.; Parker, M. H.; Armistead, D. M.; Shankaran, K. J. Org.
Chem. 1994, 59, 332. For the seminal report of the IrelandꢀClaisen
rearrangement, see:(d) Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc.
1972, 94, 5897.
(6) For an example of the synthesis of differentiated cyclic 1,2-
diols, see: Lim, S. M.; Hill, N.; Myers, A. G. J. Am. Chem. Soc. 2009,
131, 5763.
(7) For CꢀH esterification, see: (a) Chen, M. C.; White, M. C.
J. Am. Chem. Soc. 2004, 126, 1346. (b) Chen, M. S.; Prabagaran, N.;
Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (c)
Fraunhoffer, K. F.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am.
Chem. Soc. 2006, 128, 9032.
(8) For CꢀH amination, see: (a) Fraunhoffer, K. J.; White, M. C.
J. Am. Chem. Soc. 2007, 129, 7274. (b) Reed, S. A.; White, M. C. J. Am.
Chem. Soc. 2008, 130, 3316. (c) Reed, S. A.; Mazzotti, A. R.; White, M. C.
J. Am. Chem. Soc. 2009, 131, 11701. (d) Rice, G. T.; White, M. C. J. Am.
Chem. Soc. 2009, 131, 11707.
(9) For CꢀH alkylation, see: (a) Young, A. J.; White, M. C. J. Am.
Chem. Soc. 2008, 130, 14090.(b) Young, A. J.; White, M. C. Angew.
Chem., Int. Ed. 2011, 50, 6824. (c) Lin, S.; Song, C.-X.; Cai, G.-X.; Wang,
W.-H.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901.
’ CONCLUSION
We have developed a novel approach to differentiated poly-
oxygenated motifs and bifunctional syn-pyrans from homoallylic
alcohols using Pd(II)/bis-sulfoxide CꢀH oxidation catalysis.
This work underscores the power of selective CꢀH oxidation
reactions for installing versatile functionality that enables rapid
access to functionally and topologically diverse structures from
simple starting materials.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental proce-
b
dures, compound characterization data, and NMR spectra for
new compounds. This material is available free of charge via the
’ AUTHOR INFORMATION
(10) For examples of an iterative approach to polyol synthesis, see:
(a) Zacuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587.
(b) Iwata, M.; Yazaki, R.; Suzuki, Y.; Kumagai, N.; Shibasaki, M. J. Am.
Chem. Soc. 2009, 131, 18244. (c) Menz, H.; Krisch, S. F. Org. Lett. 2009,
11, 5634. (d) Hassan, A.; Lu, Y.; Krische, M. J. Org. Lett. 2009, 11, 3112.
(11) An analogous intermediate has been proposed for the
Pd(OAc)2-catalyzed 1,4-diacetoxylation of 1,3-dienes, and stereochem-
ical evidence supports an inner-sphere CꢀO bond forming process. See:
B€ackvall, J. E.; Bystr€om, S. E.; Nordberg, R. E. J. Org. Chem. 1984,
49, 4619.
Corresponding Author
’ ACKNOWLEDGMENT
Financial support was provided by NIH/NIGMS
(GM07615). P.E.G. is the recipient of the University of Illinois
Synthetic Organic and NSF Graduate Research Fellowships. We
thank TCI and Aldrich Chemical Co. for generous gifts of the
commercial bis-sulfoxide/Pd(OAc)2 catalyst (1). We also thank
Mr. Marinus Bigi for checking the experimental procedure in
Table 3, entry 1.
(12) For example, intermolecular CꢀH amination, thought to
proceed via outer-sphere CꢀN bond formation, forms predominantly
the linear regioisomer and is tolerant of homoallylic oxygen function-
ality. See ref 8b.
(13) For a detailed exploration of the role of Cr(salen)X in allylic
CꢀH oxidations, see: (a) Covell, D. J.; White, M. C. Angew. Chem., Int.
Ed. 2008, 47, 1. For other applications of Cr(salen)Cl in CꢀH
oxidations, see refs 8b and 8c and:(b) Qi, X.; Rice, G. T.; Lall, M. S.;
Plummer, M. S.; White, M. C. Tetrahedron 2010, 66, 4816. (c) Wu, L.;
Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707.
(14) The use of lower palladium loadings for CꢀH dioxanone
formation led to significantly diminished yields. For a discussion on
the need for high catalyst loadings in Pd(II)-catalyzed oxidations, see:
’ REFERENCES
(1) For examples of CꢀH activation reactions to introduce
oxygen, see: (a) Chen, M. S.; White, M. C. Science 2010, 327, 566. (b)
Chen, M. S.; White, M. C. Science 2007, 318, 783. (c) Groves, J. T.;
Nemo, T. E. J. Am. Chem. Soc. 1982, 105, 6243. (d) Chen, K.; Que, L., Jr.
J. Am. Chem. Soc. 2001, 123, 6327. (e) Mello, R.; Fiorentino, M.; Fusco,
C.; Curci, R. J. Am. Chem. Soc. 1989, 111, 6749. (f) Brodsky, B. H.; Du
Bois, J. J. Am. Chem. Soc. 2005, 127, 15391. (g) Zhou, M.; Schley, N. D.;
12588
dx.doi.org/10.1021/ja206013j |J. Am. Chem. Soc. 2011, 133, 12584–12589