Inorganic Chemistry
COMMUNICATION
’ ASSOCIATED CONTENT
S
Supporting Information. Details for all experiments,
b
spectra, and crystallographic details (CIF). This material is avail-
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: aborovik@uci.edu.
’ ACKNOWLEDGMENT
Acknowledgment is made to the NIH (Grant GM50781 to A.
S.B.) for financial support.
’ REFERENCES
(1) Shook, R. L.; Borovik, A. S. Inorg. Chem. 2010, 49, 3646–3660.
(2) (a) Marshall, N. M.; Garner, D. K.; Wilson, T. D.; Gao, Y.-G.;
Robinson, H.; Nilges, M. J.; Lu, Y. Nature 2009, 462, 113–116. (b) Miller,
A.-F. Acc. Chem. Res. 2007, 41, 501–510. (c) Jackson, T. A.; Brunold, T. C.
Acc. Chem. Res. 2004, 37, 461–470.
(3) (a) Collman, J. P.; Zhang, X. M.; Wong, K.; Brauman, J. I. J. Am.
Chem. Soc. 1994, 116, 6245–6251. (b) Wada, A.; Yamaguchi, S.; Jitsukawa,
K.; Masuda, H. Angew. Chem., Int. Ed. 2005, 44, 5698–5701. (c) Natale, D.;
Mareque-Rivas, J. C. Chem. Commun. 2008, 425–437. (d) Shook, R. L.;
Borovik, A. S. Chem. Commun. 2008, 6095–6107.
(4) Kendall, A. J.; Zakharov, L. N.; Gilbertson, J. D. Inorg. Chem.
2010, 49, 8656–8658. (b) Kovari, E.; Kramer, R. J. Am. Chem. Soc. 1996,
118, 12704–12709.
(5) Zinn, P. J.; Powell, D. R.; Day, V. W.; Hendrich, M. P.; Sorrell,
T. N.; Borovik, A. S. Inorg. Chem. 2006, 45, 3484–3486.
(6) (a) Gavrilova, A. L.; Bosnich, B. Chem. Rev. 2004, 104, 349–383.
(b) A recent review in unsymmetrical ligand designs: Jarenmark, M.;
Carlsson, H.; Nordlander, E. C. R. Chimie 2007, 10, 433–462.
(7) Du Bois, J.; Mizoguchi, T. J.; Lippard, S. J. Coord. Chem. Rev.
2000, 200, 443–485.
Figure 3. Thermal ellipsoid plots and schematic drawings for
[{CoII(OH)}CoIIH3bppap]+ (A) and [{FeII(OH)}FeIIH3bppap]+
(B). Only carboxyamido hydrogen atoms are shown for clarity. Selected
metrical parameters are given in the Supporting Information.12
2.773 Å). The Fourier transform IR spectrum supports this premise
by having a single ν(OÀH) peak at 3613 cmÀ1 and several broad
ν(NÀH) signals between 3400 and 3200 cmÀ1, consistent with
H-bonds involving the carboxyamido units.14e
(8) Stenkamp, R. E. Chem. Rev. 1994, 94 (3), 715–726.
(9) (a) Shook, R. L.; Gunderson, W. A.; Greaves, J.; Ziller, J. W.;
Hendrich, M. P.; Borovik, A. S. J. Am. Chem. Soc. 2008, 130, 8888–8889.
(b) Powell-Jia, D. A.; Pham, M. T. N.; Ziller, J. W.; Borovik, A. S. Inorg.
Chim. Acta 2010, 363, 2728–2733.
(10) (a) Ingle, G. K.; Makowska-Grzyska, M. M.; Szajna-Fuller, E.;
Sen, I.; Price, J. C.; Arif, A. M.; Berreau, L. M. Inorg. Chem. 2007, 46,
1471–1480. (b) Rudzka, K.; Arif, A. M.; Berreau, L. M. J. Am. Chem. Soc.
2006, 128, 17018–7023. (c) Mareque-Rivas, J. C.; Salvagni, E.; Parsons, S.
Dalton Trans. 2004, 4185–4192. (d) Mareques-Rivas, J. C.; de Rosales,
R. T. M.; Parsons, S. Dalton Trans. 2003, 2156–2163.
The structural analysis on [{FeII(OH)}FeIIH3bppap]+ showed
that again one five-coordinate and one six-coordinate iron
center exist, yet now an endogenous hydroxo ligand is termin-
ally bonded to one of the iron sites. The hydroxo ligand is
bonded to the five-coordinate iron site (τFe1 = 0.68), with a
Fe1ÀO5 bond length of 1.938(2) Å and a N1ÀFe1ÀO5 bond
angle of 172.62(9)° (Figure 3B). Both carboxyamido groups
are protonated around Fe1 and form intramolecular H-bonds
to the Fe1ÀO5 unit in a manner similar to that observed in
[{CoII(OH)}CoIIH3bppap]+. The Fe2 site remained six-coor-
dinate, with both O3 and O4 of the appended carboxyamido
groups bonded to the iron center.
(11) (a) Roder, J. C.; Meyer, F.; Pritzkow, H. Organometallics 2001,
20, 811–817. (b) Klingele, J.; Dechert, S.; Meyer, F. Coord. Chem. Rev.
2009, 253, 2698–2741.
(12) See the Supporting Information for details.
(13) The parameter τ is the index of trigonality for five-coordinate
complexes: Addison, A. W.; Rao, T. N.; Reedijk, J.; Van Rijn, J.;
Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.
(14) (a) Rutsch, P.; Meyer, F. Chem. Commun. 1998, 1037–1038.
(b) Bauer-Siebenlist, B.; Meyer, F.; Farkas, E.; Vidovic, D.; Dechert, S.
Chem.—Eur. J. 2005, 11, 4349–4360. (c) Bozoglian, F.; Romain, S.;
Ertem, M. Z.; Todorova, T. K.; Sens, C.; Mola, J.; Rodriguez, M.; Romero,
I.; Benet-Buchholz, J.; Fontrodona, X.; Cramer, C. J.; Gagliardi, L.; Llobet,
A. J. Am. Chem. Soc. 2009, 131, 15176–15187. (d) Strautmann, J. B. H.;
Walleck, S.; Bogge, H.; Stammler, A.; Glaser, T. Chem. Commun. 2010,
47, 695–697. (e) Macbeth, C. E.; Hammes, B. S.; Young, V. G., Jr.;
Borovik, A. S. Inorg. Chem. 2001, 40, 4733–4741.
In summary, we have developed a new dinucleating ligand that
utilizes a pyrazolate bridge and (carboxyamido)pyridyl groups.
The structures of [MII H2bppap]+ and their hydrated products
2
[{MII(OH)}MIIH3bppap]+ showed the versatility of this design
to produce complexes with varied coordination chemistry. The
formation of a single metal ion site with a terminal hydroxo ligand
is rare because of the propensity of this ligand to bridge between
metal ions. The formation of only one MÀOH site in each com-
plex is attributed to several factors, including the spacing pro-
vided by the pyrazolate unit,11b the intramolecular H-bonds, and
the bidentate binding mode of the carboxyamido groups. Our
findings illustrate the utility of this design in preparing new
classes of unsymmetrical dinuclear complexes.
7924
dx.doi.org/10.1021/ic200881t |Inorg. Chem. 2011, 50, 7922–7924