4000
L. M. Jaramillo-Gómez et al. / Tetrahedron Letters 52 (2011) 3998–4000
Table 1
Analytical data for compounds (7, 8 and 9)a–i
Entry
Ar
Compound 7
Compound 8
Compound 9
Mp (°C)
Yield %
Mp (°C)
Yield %
Mp (°C)
Yield %
a
b
c
d
e
f
g
h
i
p-CH3OC6H4
p-CH3C6H4
3,4,5-(CH3O)3C6H2
p-ClC6H4
p-NO2C6H4
p-BrC6H4
4-OH-3-CH3OC6H3
p-(CH3)2NC6H4
3,4-(CH3O)2C6H3
80–81
86
73
80
82
56
82
80
63
91
110–111
86–87
98–99
94–95
118–119
95–96
106–108
131–132
134–135
93
94
90
92
85
80
84
75
94
153–154
181–182
130–131
193–194
197–198
157–158
151–153
140–141
179–180
52
58
52
54
60
54
48
50
56
115–116
129–130
159–160
172–173
149–150
134–136
104–105
76–77
from the cold bath. Then the mixture was stirred at room temperature for 10–
24 h and after complete disappearance of the starting material 6 (TLC control),
the solvent was evaporated under reduced pressure and the residues were
purified by column chromatography on silica gel (AcOEt/DCM gradient) to
obtain compounds 7. All reactions started with 200 mg of compound 6. N-(3-
tert-Butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro-N-(4-methoxy-benzyl)acetamide
7a. Isolated as yellow solid, yield: 212 mg, IR (KBr disk, cmÀ1) 1685 (C@O),
1251 (C–O), 1032 (C–O); 1H NMR (400 MHz, CDCl3) dH 7.45–7.38 (m, 4H, Ar-
H), 7.34 (t, J = 8.0, 1H, Ar-H), 7.08 (d, J = 8.0, 2H, Ar-H), 6.79 (d, J = 8.0, 2H, Ar-
H), 5.85 (s, 1H, 4-H), 5.26 (d, J = 12.0, 1H, 7b-H), 3.99–3.92 (m, 2H, 9b-H and
7a-H), 3.79 (br s, 4H, 9a-H and OCH3), 1.30 (s, 9H, tBu). 13C NMR (100 MHz,
CDCl3) dC 166.5 (C@O), 162.4 (Cq), 159.5 (Cq), 138.4 (Cq), 137.7 (Cq), 130.6,
129.6, 127.7, 127.6 (Cq), 122.8, 113.8, 103.3 (C-4), 55.2 (OCH3), 52.0 (C-7), 41.8
(C-9), 32.5 (Cq, tBu), 30.1 (CH3, tBu). m/z (ESI, %) 413/411 (10/30, M+Å), 226
(43), 121 (100, C8H9O), 77 (7, Ph). Anal. Calcd for C23H26ClN3O2: C, 67.06; H,
6.36; N, 10.20. Found: C, 67.32; H, 6.36; N, 9.82.
over the 1-phenyl ring of the 5-aminopyrazole derivatives 6
promoted by dilauroyl peroxide (DLP) as the radical initiator. This
radical-mediated approach resulted in a useful synthetic alterna-
tive because this particular type of benzodiazepinones has not
been obtained previously under ionic reaction conditions. Studies
directed to improve the efficiency of the last step in Scheme 1,
the exploration of the broadest of this strategy and to evaluate
the practical usefulness of the obtained products 9 are currently
in progress.
Acknowledgments
Authors thank to COLCIENCIAS and Universidad del Valle for
financial support (Project CI No. 749).
6. López, G.; Jaramillo, L. M.; Abonia, R.; Cobo, J.; Glidewell, C. Acta Crystallogr., Sect.
C 2010, 66, o168–o173.
7. General procedure for the synthesis of xanthates 8. A mixture of the corresponding
chloroacetyl derivative 7 (0.5 mmol) and potassium O-ethyl carbonodithioate
(0.75 mmol) was dissolved in acetonitrile (6–8 mL) and kept in the absence of
light. The mixture was stirred at room temperature for 2–3 h and after complete
disappearance of the starting material 7 (TLC control), the solvent was removed
under reduced pressure and the residue purified by column chromatography on
silica gel (AcOEt/DCM gradient) yielding compounds 8. All reactions started with
200 mg of compound 7. S-2-[(3-tert-Butyl-1-phenyl-1H-pyrazol-5-yl)(4-
methoxybenzyl)amino]-2-oxoethyl-O-ethylcarbonodithioate 8a. Isolated as
yellow solid, yield: 225 mg. IR (KBr disk, cmÀ1) 1691 (C@O), 1237 (C–O), 1032
br (C–O); 1H NMR (400 MHz, CDCl3) dH 7.44–7.34 (m, 5H, Ar-H), 7.12 (d, J = 8.0,
2H, Ar-H), 6.81 (d, J = 8.0, 2H, Ar-H), 5.88 (s, 1H, 4-H), 5.32 (d, J = 12.0, 1H, 7b-H),
4.59 (q, J = 8.0, 2H, OCH2), 4.01 (d, J = 12.0, 1H, 7a-H), 3.92 (d, J = 16.0, 1H, 9b-H),
3.80 (s, 3H, OCH3), 3.55 (d, J = 16.0, 1H, 9a-H), 1.36 (t, J = 8.0, 3H, CH3), 1.31 (s,
9H, tBu). 13C NMR (100 MHz, CDCl3) dC 213.1 (C@S), 167.0 (C@O), 162.4 (Cq),
159.4 (Cq), 138.6 (Cq), 138.4 (Cq), 130.7, 129.5, 128.0 (Cq), 127.5, 122.9, 113.8,
103.3 (C-4), 70.5 (OCH2), 52.0 (C-7), 39.4 (C-9), 32.5 (Cq, tBu), 30.1 (CH3, tBu),
13.7 (CH3). m/z (ESI, %) 497 (2, M+Å), 376 (36), 344 (56), 121 (100, C8H9O), 77
(18), 29 (13). Anal. Calcd for C26H31N3O3S2: C, 62.75; H, 6.28; N, 8.44. Found: C,
62.88; H, 6.37; N, 8.60.
8. General procedure for the synthesis of the pyrazolodiazepinones 9. A mixture of the
corresponding xanthate 8 (1.0 mmol) and anhyd DCE (6–8 mL) was heated to
reflux under argon atmosphere. Then DLP (1.8 mmol) was added portion-wise
during 6–8 h and after complete disappearance of the starting material 8 (TLC
control), the solvent was removed under reduced pressure and the main
component of the residue was isolated and purified by column chromatography
on silica gel (AcOEt/DCM gradient) yielding compounds 9. All reactions started
with 200 mg of compound 8. 2-tert-Butyl-4-(4-methoxybenzyl)-4H-
benzo[f]pyrazolo[1,5-a][1,3]diazepin-5(6H)-one 9a. Isolated as yellow solid,
yield: 79 mg. IR (KBr disk, cmÀ1) 1670 (C@O), 1240 (C–O), 1038, (C–O); 1H NMR
(400 MHz, CDCl3) dH 7.75 (d, J = 8.0, 1H, 10-H), 7.43 (t, J = 8.0, 1H, 9-H), 7.35 (d,
J = 8.0, 1H, 7-H), 7.31 (t, J = 8.0, 1H, 8-H), 7.05 (d, J = 8.0, 2H, Ar-H), 6.79 (d, J = 8.0,
2H, Ar-H), 5.92 (s, 1H, 3-H), 4.86 (br s, 2H, 12-H), 3.77 (s, 3H, OCH3), 3.69 (s, 2H,
6-H), 1.31 (s, 9H, tBu). 13C NMR (100 MHz, CDCl3) dC 169.1 (C@O), 162.8 (Cq),
158.9 (Cq), 141.3 (Cq), 137.4 (Cq), 128.9 (C-7), 128.8 (Cq and C-9), 128.5, 127.6
(C-8), 126.8 (Cq), 122.7 (C-10), 114.0, 94.7 (C-3), 55.2 (OCH3), 51.8 (C-12), 41.0
(C-6), 32.5 (Cq, tBu), 30.2 (CH3, tBu). m/z (ESI, %) 375 (26, M+Å), 151 (36), 121
(100, C8H9O), 120.0 (100), 91 (62), 77 (88), 57 (53). Anal. Calcd for C23H25N3O2:
C, 73.58; H, 6.71; N, 11.19. Found: C, 73.69; H, 6.48; N, 11.25.
References and notes
1. (a) García, J.; Andrés, J.; Fraile, A.; Martín, A.; Martín, M. Tetrahedron Lett. 2004,
45, 4653–4656; (b) Novikov, M.; Khlebnikov, A.; Shevchenko, M. J. Fluorine
Chem. 2003, 123, 177–181; (c) Abonia, R.; Cuervo, P.; Insuasty, B.; Quiroga, J.;
Nogueras, M.; Cobo, J. Eur. J. Org. Chem. 2008, 4684–4689; (d) Jalil Miah, M.;
Hudlicky, T.; Reed, J. In The Alkaloids; Brossi, A., Ed.; Academic: New York, NY,
´
1998; Vol. 51, pp 199–269; (e) Sacchi, S.; Kantarjian, H.; OBrien, S.; Cortes, J.;
Rios, M.; Giles, F.; Beran, M.; Koller, C.; Keating, M.; Talpaz, M. Cancer 1999, 86,
2632–2641; (f) Tietze, L.; Braun, H.; Steck, P.; El Bialy, S.; Tölle, N.; Düfert, A.
Tetrahedron 2007, 63, 6437–6445; (g) Koseki, J.; Sato, H.; Watanabe, Y.;
Nagasaka, T. Org. Lett. 2002, 4, 885–888; (h) Campiani, G.; Ramunno, A.; Fiorini,
I.; Nacci, V.; Morelli, E.; Novellino, E.; Goegan, M.; Mennini, T.; Sullivan, S.;
Zisterer, D.; Williams, C. J. Med. Chem. 2002, 45, 4276–4281; (i) Kamal, A.;
Laxman, E.; Laxman, N.; Rao, N. Bioorg. Med. Chem. Lett. 2000, 10, 2311–2313;
(j) Sum, F.-W.; Dusza, J.; Delos Santos, E.; Grosu, G.; Reich, M.; Du, X.; Albright,
J.; Chan, P.; Coupet, J.; Ru, X.; Mazandarani, H.; Saunders, T. Bioorg. Med. Chem.
Lett. 2003, 13, 2195–2198.
2. (a) Kaoudi, T.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Angew. Chem., Int. Ed. 2000, 39,
731–733; (b) Boivin, J.; Boutillier, P.; Zard, S. Tetrahedron Lett. 1999, 40, 2529–
2532; (c) Ibarra-Rivera, T.; Gámez-Montaño, R.; Miranda, L. Chem. Commun.
2007, 3485–3487; (d) Boint, G.; Quiclet-Sire, B.; Salet, T.; Zard, S. Synlett 2003,
382–384; (e) Kaoudi, T.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Angew. Chem. 2000,
112, 747–749; (f) Bacqué, E.; Qacemi, M.; Zard, S. Org. Lett. 2004, 6, 3671–3675.
3. (a) Jaramillo, L. M.; Restrepo, N.; Gómez, F.; Hudlicky, T. Synth. Commun. 1999,
29, 2795–2806; (b) Jaramillo, L. M.; Martin, J. Bol. Soc. Chil. Quim. 1998, 43, 259–
266; (c) Jaramillo-Gómez, L. M.; Loaiza, A.; Martín, J.; Ríos, L. A.; Wang, P. G.
Tetrahedron Lett. 2006, 47, 3909–3912.
4. (a) Castillo, J.; Abonía, R.; Hursthouse, M.; Cobo, J.; Glidewell, C. Acta Crystallogr.,
Sect. C 2009, C65, o495–o497; (b) Castillo, J.; Abonia, R.; Cobo, J.; Glidewell, C.
Acta Crystallogr., Sect. C 2009, 65, o303–o310; (c) Abonia, R.; Rengifo, E.; Cobo, J.;
Low, J. N.; Glidewell, C. Acta Crystallogr., Sect. C 2007, 63, o29–o32; (d) Abonia, R.;
Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Eur. J. Org. Chem. 2010,
6454–6463.
5. General procedure for the synthesis of chloroacetyl derivatives 7. A mixture of
chloroacetyl chloride (0.1 mL, 1.25 mmol), dichloromethane (8 mL) and
triethylamine (0.3 mL, 2.15 mmol) was cooled on an ice-water bath under
argon atmosphere. Then the corresponding arylpyrazolylamine 6 (0.6 mmol),
dissolved in dichloromethane (2 mL) was added and the solution was removed