Macromolecules
ARTICLE
’ ASSOCIATED CONTENT
S
Supporting Information. Synthesis and characterization
b
details, H and 13C NMR spectra, photoluminescence spectra,
and cyclic voltammograms of polymers. This material is available
1
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: mdwatson@uky.edu.
’ ACKNOWLEDGMENT
We thank NSF (CHE-0616759) for financial support and Dr.
Manfred Wagner (Max-Planck Institut fuer Polymerforschung)
for high-temperature NMR measurements of polymer P2a.
Figure 5. UVꢀvis absorption spectra of P3 and P4 in solution (dashed
line, 7 ꢁ 10ꢀ6 M in CHCl3, based on polymer repeat unit) and film
(solid line).
’ REFERENCES
(1) Jung, B. J.; Tremblay, N. J.; Yeh, M.-L.; Katz, H. E. Chem. Mater.
2011, 23, 568.
(2) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X.
Adv. Mater. 2011, 22, 3876.
(3) Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.;
Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.
(4) Huang, C.; Barlow, S.; Marder, S. R. J. Org. Chem. 2011, 76, 2386.
(5) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li,
W.; Lin, Y.; Dodabalapur, A. Nature 2000, 404, 478.
(6) Jones, B. A.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Chem.
Mater. 2007, 19, 2703.
Electrochemical Characterization. LUMO energy levels of
the PMDI-based PPEs were estimated via cyclic voltammetry
(CV) scans of polymer films, and relevant data are tabulated at
the bottom of Scheme 3. Similar to the parent PMDI, all the new
PMDI-based polymers show two reversible or quasireversible
reduction waves with first half-wave potentials near ꢀ1.20 V vs
Fc/Fc+. Taking the energy of the redox couple for Fc/Fc+ to be
67
ꢀ4.8 eV vs vacuum,
E
of all of the polymers are estimated
LUMO
to be between ꢀ3.5 and ꢀ3.6 eV, comparable to two PMDI small
molecules evaluated here and in good agreement with reported
data for other PMDI derivatives.36,68 The variation of donor
monomers has essentially no effect on ELUMO of the polymers
because all polymers share PMDI as the acceptor unit and the
LUMO likely localizes on the PMDI along the axis perpendicular
to the polymer backbone, similar to the case of the analogue to
M1 reported by Shinmyozu.59 For P1, no features attributable to
oxidation were seen at potentials up to 2.0 V. Weak features are
seen for the other polymers, appearing at progressively more
positive potentials in the order P5 f P4 f P3 f P2 (Figure
S23). HOMO energy levels were estimated from polymer optical
energy gaps and LUMO levels based on the following equation:
EHOMO = ELUMO ꢀ Egopt. As expected, the HOMO energy levels
of P1ꢀP5 rise from ꢀ5.88 to ꢀ5.08 eV as the electron-donating
ability of donor counits is increased.
(7) Gao, X.; Di, C.; Hu, Y.; Yang, X.; Fan, H.; Zhang, F.; Liu, Y.; Li,
H.; Zhu, D. J. Am. Chem. Soc. 2010, 132, 3697.
(8) Schmidt, R.; Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.;
Radacki, K.; Braunschweig, H.; K€unemann, M.; Erk, P.; Bao, Z.;
W€urthner, F. J. Am. Chem. Soc. 2009, 131, 6215.
(9) Piliego, C.; Jarzab, D.; Gigli, G.; Chen, Z.; Facchetti, A.; Loi,
M. A. Adv. Mater. 2009, 21, 1573.
(10) Ortiz, R. P.; Herrera, H.; Blanco, R.; Huang, H.; Facchetti, A.;
Marks, T. J.; Zheng, Y.; Segura, J. L. J. Am. Chem. Soc. 2010, 132, 8440.
(11) Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.;
Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007,
129, 7246.
(12) Guo, X.; Watson, M. D. Org. Lett. 2008, 10, 5333.
(13) Chen, Z.; Zheng, Y.; Yan, H.; Facchetti, A. J. Am. Chem. Soc.
2009, 131, 8.
(14) Durban, M. M.; Kazarinoff, P. D.; Luscombe, C. K. Macro-
molecules 2010, 43, 6348.
(15) Kudla, C. J.; Dolfen, D.; Schottler, K. J.; Koenen, J.-M.; Breusov,
D.; Allard, S.; Scherf, U. Macromolecules 2010, 43, 7864.
(16) Zhan, X.; Tan, Z.; Zhou, E.; Li, Y.; Misra, R.; Grant, A.;
Domercq, B.; Zhang, X.; An, Z.; Zhang, X.; Barlow, S.; Kippelen, B.;
Marder, S. R. J. Mater. Chem. 2009, 19, 5794.
(17) Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K.
Angew. Chem., Int. Ed. 2010, 50, 2799.
(18) W€urthner, F.; Ahmed, S.; Thalacker, C.; Debaerdemaeker, T.
Chem.—Eur. J. 2002, 8, 4742.
(19) Zhang, Q.; Tour, J. M. J. Am. Chem. Soc. 1998, 120, 5355.
(20) Nielsen, C. B.; Bjørnholm, T. Org. Lett. 2004, 6, 3381.
(21) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; D€otz,
F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
(22) Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. J. Am. Chem.
Soc. 2009, 131, 7206.
(23) Zou, Y.; Najari, A.; Berrouard, P.; Beauprꢀe, S.; Aïch, B. R.; Tao,
Y.; Leclerc, M. J. Am. Chem. Soc. 2010, 132, 5330.
(24) Rivnay, J.; Toney, M. F.; Zheng, Y.; Kauvar, I. V.; Chen, Z.;
Wagner, V.; Facchetti, A.; Salleo, A. Adv. Mater. 2010, 22, 4359.
’ CONCLUSION
Pyromellitic diimide (PMDI) units impart near constant
LUMO energies to PPEs, allowing facile tuning of optical energy
gap via variation of donor comonomers. The polymers reported
here are soluble in common organic solvents, but extensive
aggregation prevents full characterization of all the polymers.
NMR data for two polymers along with small-molecule model
studies indicate that the polymers can be prepared cleanly by
Sonogashira coupling. One of the polymers (P5) demonstrated
opt
Eg as low as ∼1.50 eV, which seems to represent the lowest
value reported for any PPE. Broad absorption profiles and
moderately deep HOMO energies suggest that a couple of these
polymers could be good candidates for photovoltaic applications
and the low-lying LUMO levels of all these PMDI-based poly-
mers suggest some promise as n-type polymer semiconductors.
6715
dx.doi.org/10.1021/ma2009063 |Macromolecules 2011, 44, 6711–6716