ORGANIC
LETTERS
2011
Vol. 13, No. 17
4562–4565
Ti-amide Catalyzed Synthesis
of Cyclic Guanidines from
Di-/Triamines and
Carbodiimides
Hao Shen, Yang Wang, and Zuowei Xie*
Department of Chemistry and State Key Laboratory on Synthetic Chemistry,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Received June 29, 2011
ABSTRACT
A titanacarborane monoamide catalyzed, one-step synthesis of mono/bicyclic guanidines from commercially available di/triamines and
carbodiimides is reported. The reaction mechanism is also proposed.
A growing number of biologically and pharmaceutically
relevant compounds incorporate the cyclic guanidine
functionality.1 Cyclic guanidines are also capable of
catalyzing organic reactions2 and exhibiting a variety of
coordination modes and a range of donor properties
leading to compatibility with a wide range of metal ions.3
Therefore, their synthesis has been extensively explored.
Generally, the known methods include (1) the reactions4 of
(1) For examples, see: (a) Guanidines 2: Further Explorations of the
Biological and Chemical Significance of Guanidino Compounds; Mori, A.,
Cohen, B. D., Koide, H., Eds.; Plenum Press: New York, 1987. (b) Greenhil,
J. V.; Lue, P. In Progress in Medicinal Chemistry; Ellis, G. P., Luscombe,
D. K., Eds.; Elsevier Science: New York, 1993; Vol. 30, ch 5. (c) Berlinck,
R. G. S.; Burtoloso, A. C. B.; Kossuga, M. H. Nat. Prod. Rep. 2008, 25,
919. (d) He, H.; Williamson, R. T.; Shen, B.; Graziani, E. I.; Yang, H. Y.;
Sakya, S. M.; Petersen, P. J.; Carter, G. T. J. Am. Chem. Soc. 2002, 124,
9729. (e) Jackson, M. D.; Gould, S. J.; Zabriskie, T. M. J. Org. Chem.
2002, 67, 2934. (f) Kinnel, R. B.; Gehrken, H.-P.; Swali, R.; Skoropowski,
G.; Scheuer, P. J. J. Org. Chem. 1998, 63, 3281. (g) Durant, G. J. Chem.
Soc. Rev. 1985, 14, 375. (h) Berlinck, R. G. S. Nat. Prod. Rep. 1996, 13, 377.
(i) Berlinck, R. G. S. Nat. Prod. Rep. 1999, 16, 339. (j) Heys, L.; Moore,
C. G.; Murphy, P. J. Chem. Soc. Rev. 2000, 29, 57. (k) Berlinck, R. G. S.
Nat. Prod. Rep. 2002, 19, 617.
(2) For examples, see: (a) Leow, D.; Tan, C.-H. Synlett 2010, 1589.
(b) Leow, D.; Tan, C.-H. Chem.ꢀAsian. J. 2009, 4, 488. (c) Ishikawa, T.;
Kumamoto, T. Synthesis 2006, 737. (d) Ma, T.; Fu, X.; Kee, C. W.;
Zong, L.; Pan, Y.; Huang, K.-W.; Tan, C.-H. J. Am. Chem. Soc. 2011,
133, 2828. (e) Misaki, T.; Takimoto, G.; Sugimura, T. J. Am. Chem. Soc.
2010, 132, 6286. (f) Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc.
2006, 128, 16044. (g) Kita, T.; Georgieva, A.; Hashimoto, Y.; Nakata,
T.; Nagasawa, K. Angew. Chem., Int. Ed. 2002, 41, 2832. (h) Ishikawa,
T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T. Chem.
Commun. 2001, 245. (i) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1,
157.
(4) For examples, see: (a) Rodricks, J. V.; Rapoport, H. J. Org.
Chem. 1971, 36, 46. (b) Baltzer, C. M.; McCarty, C. G. J. Org. Chem.
1973, 38, 155. (c) Isobe, T.; Fukuda, K.; Tokunaga, T.; Seki, H.;
Yamaguchi, K.; Ishikawa., T. J. Org. Chem. 2000, 65, 7774. (d) Heinelt,
€
U.; Schultheis, D.; Jager, S.; Lindenmaier, M.; Pollex, A.; Beckmann,
H. S. G. Tetrahedron 2004, 60, 9883. (e) Yu, Y.; Ostresh, J. M.; Houghten,
R. A. J. Org. Chem. 2002, 67, 3138. (f) Cheng, X.-H.; Liu, F.-C. Synth.
Commun. 1993, 23, 3191.
(5) (a) Ermolat’ev, D. S.; Bariwal, J. B.; Steenackers, H. P. L.; De
Keersmaecher, S. C. J.; Van der Eycken, E. V. Angew. Chem., Int. Ed.
2010, 49, 9465. (b) Gainer, M. J.; Bennett, N. R.; Takahashi, Y.; Looper,
R. E. Angew. Chem., Int. Ed. 2011, 50, 684. (c) Giles, R. L.; Sullivan,
J. D.; Steiner, A. M.; Looper, R. E. Angew. Chem., Int. Ed. 2009, 48,
3116. (d) Wang, Y.; Shen, H.; Xie, Z. Synlett 2011, 969. (e) Oyler, A. R.;
Naldi, R. E.; Stefanick, S. M.; Lloyd, J. R.; Graden, D. A.; Cotter, M. L.
J. Pharm. Sci. 1989, 78, 21.
€
(6) (a) Buchi, G.; Rodriguez, A. D.; Yakushijin, K. J. Org. Chem.
1989, 54, 4494. (b) Tsuchiya, S.; Sunazuka, T.; Hirose, T.; Mori, R.;
Tanaka, T.; Iwatsuki, M.; Omura, S. Org. Lett. 2006, 8, 5577. (c)
Vvedensky, V. Y.; Rogovoy, B. V.; Kiselyov, A. S.; Ivachtchenko,
A. V. Tetrahedron Lett. 2005, 46, 8699.
(7) (a) Baeg, J.-O.; Bensimon, C.; Alper, H. J. Am. Chem. Soc. 1995,
117, 4700. (b) Butler, D. C. D.; Inman, G. A.; Alper, H. J. Org. Chem.
2000, 65, 5887. (c) Zhao, B.; Du, H.; Shi, Y. Org. Lett. 2008, 10, 1087.
(8) For more examples, see: (a) Bycroft, B. W.; Cameron, D.; Croft,
L. R.; Johnson, A. W. Chem. Commun. 1968, 1301. (b) Obase, H.;
Nakamizo, N.; Takai, H.; Teranishi, M. Bull. Chem. Soc. Jpn. 1983, 56,
3189. (c) Ishikawa, F.; Kosasayama, A.; Nakamura, S.; Konno, T.
Chem. Pharm. Bull. 1978, 26, 3658.
(3) For examples, see: (a) Coles, M. P. Dalton Trans. 2006, 985. (b)
€
Coles, M. P.; Sozerli, S. E.; Smith, J. D.; Hitchcock, P. B. Organome-
tallics 2007, 26, 6691. (c) Dyer, P. W.; Fawcett, J.; Hanton, M. J.
Organometallics 2008, 27, 5082. (d) Bailey, P. J.; Pace, S. Coord. Chem.
Rev. 2001, 214, 91. (e) Chen, E. Y.-X.; Rodriguez-Delgado, A. In
Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos,
D. M. P., Eds.; Elsevier: Oxford, 2007; Vol. 4.
r
10.1021/ol201752e
Published on Web 08/04/2011
2011 American Chemical Society