1282
A. DENHOF ET AL.
Compounds 13a,b, General Procedure
To a degassed chilled solution of 11 (50 mg, 0.081 mmol) in dimethylformamide
(DMF) (3 mL) 1 M CsOH/MeOH solution (0.17 mL, 0.17 mmol) was added; the mixture
was stirred for 15 min at rt and then the aromatic bromide 14 (0.080 mmol) was added
in THF (1 mL) upon chilling to 0◦C. The mixture was stirred for 90 min and allowed to
warm to rt. The solvent was removed under vacuum and the product 13 was purified by FC
(CH2Cl2/C6H12, 1:3).
Compound 13a. Yield 30 mg (61%, 0.049 mmol) of yellow-orange slowly crys-
1
tallizing syrup. Rf = 0.29 (CH2Cl2/C6H12, 1:3). Mp 140–143◦C. H NMR (200 MHz,
CHCl3): δ = 1.27 (s, 18H, CH3), 4.26 (s, 4H, CH2-S), 4.92 (s, 2H, CH2-N), 6.43 (s, 2H,
CH-N), 6.96 (d, J = 2 Hz, 2H, Aryl-H), 7.18–7.31 (m, 4H, Aryl-H), 7.34 ppm (t, J = 2.0
Hz, 1H, Aryl-H). 13C NMR (50 MHz, CDCl3): δ = 31.62, 35.04, 38.65, 55.20, 110.84,
113.00, 119.10, 120.98, 121.87, 122.31, 128.85, 130.11, 130.76, 134.80, 136.11, 151.64
ppm. HR-EI-MS (70 eV): m/z = 611.09326 (M+, C31H33NS6+, Calcd. 611.09373).
Compound 13b. Yield 26 mg (39%, 0.032 mmol) of yellow-orange slowly crys-
tallizing oil. Rf = 0.27 (CH2Cl2/C6H12, 1:3). Mp 114–115◦C. 1H NMR (200 MHz, CDCl3)
δ = 0.93 (t, J = 6.4 Hz, 6H, CH3), 1.28 (s, 18H, CH3), 1.24–1.60 (m, 12H, (CH2)3CH3),
1.73–1.86 (m, 4H, CH2CH2O), 3.95 (t, J = 6.4 Hz, 4H, CH2-O), 4.33 (s, 4H, CH2-S), 4.93
(s, 2H, CH2-N), 6.45 (s, 2H, CH-N), 6.78 (s, 2H, Aryl-H), 6.97 (d, J = 1.8 Hz, 2H, Aryl-H),
7.35 ppm (t, J = 1.8 Hz, 1H, Aryl-H). 13C NMR (50 MHz, CDCl3) δ = 14.35, 22.90, 26.09,
29.63, 31.62, 31.79, 31.89, 35.05, 55.21, 69.50, 111.69, 112.53, 112.98, 119.19, 120.57,
121.86, 122.31, 125.23, 130.76, 136.15, 150.75, 151.64 ppm. HR-EI-MS (70 eV): m/z =
811.27066 (M+, C43H57NO2S6+, Calcd. 811.27136).
REFERENCES
1. (a) Krief, A. Tetrahedron 1986, 42, 1209–1252; (b) Segura, J. L.; Mart´ın, N. Angew. Chem. Int.
Ed. 2001, 40, 1372–1409; (c) Yamada, J.; Sugimoto, T. (Eds.). TTF Chemistry. Fundamentals
and Applications of Tetrathiafulvalene; Springer: 2004; (d) Fabre, J. M. Chem. Rev. 2004, 104,
5133–5150.
2. Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891–4945.
3. (a) Bryce, M. R. J. Mater. Chem. 2000, 10, 589–598; (b) Nielsen, M. B.; Diederich, F. Chem. Rev.
2005, 105, 1837–1867; (c) Inagi, S.; Naka, K.; Chujo, Y. J. Mater. Chem. 2007, 17, 4122–4135.
4. Jeppesen, J. O.; Nielsen, M. B.; Becher, J. Chem. Rev. 2004, 104, 5115–5131.
5. (a) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem.
Res. 2001, 34, 433–444; (b) Moonen, N. N. P.; Flood, A. H.; Ferna´ndez, J. M.; Stoddart, J. F.
Top. Curr. Chem. 2005, 262, 99–132; (c) Canevet, D.; Salle´, M.; Zhang, G.; Zhang, D.; Zhu, D.
Chem. Commun. 2009, 2245–2269.
6. (a) Azov, V. A.; Go´mez, R.; Stelten, J. Tetrahedron 2008, 64, 1909–1917; (b) Skibin´ski, M.;
Go´mez, R.; Lork, E.; Azov, V. A. Tetrahedron 2009, 65, 10348–10354.
7. (a) Chen, C.-W.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1978, 100, 4921–4922; (b) Rowan, A.
E.; Elemans, J. A. A. W.; Nolte, R. J. M. Acc. Chem. Res. 1999, 32, 995–1006; (c) Kla¨rner,
F.-G.; Kahlert, B. Acc. Chem. Res. 2003, 36, 919–932; (d) Kurebayashi, H.; Haino, T.; Usui, S.;
Fukazawa, Y. Tetrahedron 2001, 57, 8667–8674.
8. (a) Jeppesen, J. O.; Takimiya, K.; Jensen, F.; Brimert, T.; Nielsen, K.; Thorup, N.; Becher, J.
J. Org. Chem. 2000, 65, 5794–5805; (b) Jeppesen, J. O.; Becher, J. Eur. J. Org. Chem. 2003,
3245–3266; (c) Nygaard, S.; Laursen, B. W.; Hansen, T. S.; Bond, A. D.; Flood, A. H.; Jeppesen,
J. O. Angew. Chem. Int. Ed. 2007, 46, 6093–6097.