Fig. 2 SEM (A) and release profile (B) of Nb from gel of PA 6 mixed
1 : 1 with diluent PA into buffer at physiological pH (n = 5).
Notes and references
1 D. A. LaVan, T. McGuire and R. Langer, Nat. Biotechnol., 2003,
21, 1184–1191.
2 P. Y. W. Dankers and E. W. Meijer, Bull. Chem. Soc. Jpn., 2007,
80, 2047–2073.
3 H. G. Cui, M. J. Webber and S. I. Stupp, Biopolymers, 2010, 94,
1–18.
4 M. R. Kapadia, L. W. Chow, N. D. Tsihlis, S. S. Ahanchi,
J. A. Hrabie, J. Murar, J. Martinez, D. A. Popowich, Q. Jiang,
J. E. Saavedra, L. K. Keefer, J. F. Hulvat, S. I. Stupp and
M. P. Kibbe, J. Vasc. Surg., 2008, 47, 173–182.
5 M. C. Branco, D. J. Pochan, N. J. Wagner and J. P. Schneider,
Biomaterials, 2010, 31, 9527–9534.
Fig. 1 TEM and SAXS of PA 5 (A and C) and PA 6 (B and D).
to a lysine e-amine, revealing a free hydrazide upon cleavage
from the resin. We demonstrated an application of this
chemistry by developing a hydrazide-containing PA, to which
a small molecule drug could be tethered via hydrazone formation.
Drug tethering was found not to alter the assembly of the PA
into filamentous aggregates. The small molecule drug could
then be slowly released from the PA gel into aqueous solution.
Further studies on small molecule drug release from PA gels
are currently underway in our laboratory. We expect that building
block 4 will be useful in several areas of peptide and polymer-
based medicine, including peptide-based biomaterials, peptide
labeling and polymeric drug conjugation.
6 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294,
1684–1688.
7 G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington,
J. A. Kessler and S. I. Stupp, Science, 2004, 303, 1352–1355.
8 K. Rajangam, H. A. Behanna, M. J. Hui, X. Q. Han, J. F. Hulvat,
J. W. Lomasney and S. I. Stupp, Nano Lett., 2006, 6, 2086–2090.
9 M. J. Webber, X. Q. Han, S. N. P. Murthy, K. Rajangam,
S. I. Stupp and J. W. Lomasney, J. Tissue Eng. Regen. M., 2010,
4, 600–610.
10 A. Mata, Y. B. Geng, K. J. Henrikson, C. Aparicio, S. R. Stock,
R. L. Satcher and S. I. Stupp, Biomaterials, 2010, 31, 6004–6012.
11 R. N. Shah, N. A. Shah, M. M. D. Lim, C. Hsieh, G. Nuber and
S. I. Stupp, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 3293–3298.
12 Z. Huang, C. J. Newcomb, P. Bringas, Jr., S. I. Stupp and
M. L. Snead, Biomaterials, 2010, 31, 9202–9211.
13 J. C. Stendahl, M. S. Rao, M. O. Guler and S. I. Stupp, Adv. Funct.
Mater., 2006, 16, 499–508.
14 M. J. Webber, J. Tongers, M. A. Renault, J. G. Roncalli,
D. W. Losordo and S. I. Stupp, Acta Biomater., 2010, 6, 3–11.
15 H. R. Ihre, O. L. P. De Jesus, F. C. Szoka and J. M. J. Frechet,
Bioconjugate Chem., 2002, 13, 443–452.
16 R. M. Sawant, J. P. Hurley, S. Salmaso, A. Kale, E. Tolcheva,
T. S. Levchenko and V. P. Torchilin, Bioconjugate Chem., 2006, 17,
943–949.
17 Y. Bae, S. Fukushima, A. Harada and K. Kataoka, Angew. Chem.,
Int. Ed., 2003, 42, 4640–4643.
18 J. Shao and J. P. Tam, J. Am. Chem. Soc., 1995, 117, 3893–3899.
19 A. Dirksen, S. Dirksen, T. M. Hackeng and P. E. Dawson, J. Am.
Chem. Soc., 2006, 128, 15602–15603.
20 L. Guy, J. Vidal, A. Collet, A. Amour and M. Reboud-Ravaux,
J. Med. Chem., 1998, 41, 4833–4843.
21 C. Grandjean, H. Gras-Masse and O. Melnyk, Chem.–Eur. J.,
2001, 7, 230–239.
This work was supported by the NIDCR, grant No.
2R01DE015920-06 and the NIBIB, grant No. 2R01EB003806-
06A2. JBM was supported by a Baxter Early Career Development
Award in Bioengineering. We are grateful to the Peptide
Synthesis Core in the Institute for BioNanotechnology in
Medicine (IBNAM), the Biological Imaging Facility (BIF),
the Integrated Molecular Structure Education and Research
Center (IMSERC) and the Electron Probe Instrumentation
Center (EPIC) of the Northwestern University Atomic- and
Nanoscale Characterization Experimental Center (NUANCE)
for instrument use. NUANCE Center is supported by NSF-NSEC,
NSF-MRSEC, Keck Foundation, the State of Illinois,
and Northwestern University. We acknowledge Dr Steven
Weigand and the DuPont-Northwestern-Dow Collaborative
Access Team (DND-CAT) Synchrotron Research Center at
the Advanced Photon Source (APS) at Argonne National Lab
for assistance with SAXS measurements. Use of the APS was
supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. Matt Webber and Dr Ronit Bitton of
the authors’ laboratory are acknowledged for help with SEM
and SAXS, respectively.
22 D. Bonnet, C. Grandjean, P. Rousselot-Pailley, P. Joly, L. Bourel-
Bonnet, V. Santraine, H. Gras-Masse and O. Melnyk, J. Org.
Chem., 2003, 68, 7033–7040.
23 J. S. Moore and S. I. Stupp, Macromolecules, 1990, 23, 65–70.
24 O. Glatter and O. Kratky, Small Angle X-ray Scattering, Academic
Press Inc., New York, 1982.
25 J. Kalia and R. T. Raines, Angew. Chem., Int. Ed., 2008, 47,
7523–7526.
c
7964 Chem. Commun., 2011, 47, 7962–7964
This journal is The Royal Society of Chemistry 2011