P. Krishnamoorthy et al. / Inorganic Chemistry Communications 14 (2011) 1318–1322
1321
Complex 3
Complex 4
1.14
1.12
1.10
1.08
1.06
1.04
1.02
1.00
1.10
1.08
600
600
1.06
1.04
500
400
300
200
100
500
1.02
1.00
0
2
4
6
8
10
0
2
4
6
8
-6
10
-6
400
300
200
100
0
[Complex] x 10
M
[Complex] x 10 M
0
550
600
650
700
750
550
600
650
700
750
Wavelength (nm)
Wavelength (nm)
Fig. 4. Emission spectra of DNA–EB system (10 μM), in the presence of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 μM complexes 3 and 4. An arrow indicates the emission intensity
changes upon increasing complex concentrations. Inset: Stern–Volmer plot of the fluorescence titration data corresponding to complexes 3 and 4.
[3] F.L. Yin, J. Shen, J.J. Zou, R.C. Li, Study on the synthesis, characterisation, crystal
other (complex 3) containing phenyl ring. The overall scavenging
activity of the tested compounds was found to decrease in the order of
structure and anticancer activity of a bridging ligand complex of Cu(II) with 2, 2′-
bipyridine and demethylcantharate, Acta Chim. Sinica 61 (2003) 556–561.
4N3N2N1. Further, the results obtained against the three different
radicals confirmed that the complexes are more effective to arrest the
formation of the nitric oxide than the hydroxyl and DPPH radicals and
the lower IC50 values observed in antioxidant assays did demonstrate
that these complexes exhibited differential and selective effects to
scavenge radicals and hence the potential as drugs to eliminate the
radicals.
[4] D. Sutton, Organometallic diazo compounds, Chem. Rev. 93 (1993) 995–1022.
[5] H. Kisch, P. Holzmeier, Organometallic chemistry of the N=N group, Adv.
Organomet. Chem. 34 (1992) 67–109.
[6] D. Sellmann, K. Engl, F.W. Heinemann, J. Sieler, Coordination of CO, NO, N2H2, and
other nitrogenase relevant small molecules to sulfur-rich ruthenium complexes
with the new ligands‘tpS4’2−=1,2-Bis(2-mercaptophenylthio) phenylene(2−),
Eur. J. Inorg. Chem. (2000) 1079–1089.
[7] G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, F. Busatto, G. Pelizzi,
Aryldiazene, aryldiazenido, and hydrazine complexes of manganese: preparation,
characterization, and X-ray crystal structures of [Mn(CO)3(4-CH3C6H4N=NH)
{PPh(OEt)2}2]BF4 and [Mn(CO)3(NH2NH2){PPh(OEt)2}2]BPh4 derivatives, Inorg.
Chem. 36 (1997) 1296–1305.
Acknowledgement
[8] M.A. Ali, R.N. Bose, Transition metal complexes of furfural and benzil schiff bases
derived from S-benzyldithiocarbazate, Polyhedron 3 (1984) 517–522.
[9] C. Richardson, P.J. Steel, The first metal complexes of 3,3′-bi-1,2,4-oxadiazole: a
curiously ignored ligand, Inorg. Chem. Comm. 10 (2007) 884–887.
[10] A.K. Patra, T. Bhowmick, S. Roy, S. Ramakumar, A.R. Chakravarty, Copper(II)
complexes of L-arginine as netropsin mimics showing DNA cleavage activity in red
light, Inorg. Chem. 48 (2009) 2932–2943.
[11] A.K. Patra, S. Roy, A.R. Chakravarty, Synthesis, crystal structures, DNA binding and
cleavage activity of L-glutamine copper(II) complexes of heterocyclic bases, Inorg.
Chim. Acta 362 (2009) 1591–1599.
We thank the University Grants Commission (UGC), New Delhi,
India for the award of Fellowship in Science for Meritorious Students
(RFSMS) to one of the authors (P. Krishnamoorthy) under UGC-SAP-
DRS programme. PTM is thankful to DST-India (FIST Programme at
School of Chemistry, Bharathidasan University) for the use of Bruker
Smart APEX II diffractometer.
[12] B.M. Zeglis, V.C. Pierre, J.K. Barton, Metallo-intercalators and metallo-insertors,
Chem. Comm. (2007) 4565–4579.
Appendix A. Supplementary data
[13] P.G. Baraldi, A. Bovero, F. Fruttarolo, D. Preti, M. Aghazadeh Tabrizi, M.G. Pavani, R.
Romagnoli, DNA minor groove binders as potential antitumours and antimicrobial
agents, Med. Res. Rev. 24 (2004) 475–528.
[14] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange,
J. Chem. Phys. 98 (1993) 5648–5654.
[15] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation
energies for local spin density calculations: a critical analysis, Can. J. Phys. 58
(1980) 1200–1211.
CCDC 771893 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via www.
tallographic Data Center, 12 Union Road, Cambridge CB21EZ, UK)
Fax: (+44) 1223-336-033; Email: deposit@ccdc.cam.ac.uk) or www.
[16] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation energy
Supplementary materials related to this article can be found online
formula into
785–807.
a functional of the electron density, Phys. Rev. B 37 (1988)
[17] Wedig Dolg, Stoll, Preuss, Energ-adjusted ab initio pseudopotentials for the first
row transition elements, J. Chem. Phys. 86 (1987) 866–872.
References
[18] Yihan Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, A.T.B.
Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O'Neill, R.A. DiStasio Jr., R.C. Lochan, T.
Wang, G.J.O. Beran, N.A. Besley, J.M. Herbert, C.Y. Lin, T.V. Voorhis, S.H. Chien, A.
Sodt, R.P. Steele, V.A. Rassolov, P.E. Maslen, P.P. Korambath, R.D. Adamson, B.
Austin, E.F.C. Baker, J. Byrd, H. Dachsel, R.J. Doerksen, A. Dreuw, B.D. Dunietz, A.D.
Dutoi, T.R. Furlani, S.R. Gwaltney, A. Heyden, So Hirata, Chao-Ping Hsu, G.
Kedziora, R.Z. Khalliulin, P. Klunzinger, A.M. Lee, M.S. Lee, W. Liang, I. Lotan, N.
Nair, B. Peters, E.I. Proynov, P.A. Pieniazek, Y.M. Rhee, J. Ritchie, E. Rosta, C.D.
Sherrill, A.C. Simmonett, J.E. Subotnik, H. Lee Woodcock III, W. Zhang, A.T. Bell, A.
K. Chakraborty, D.M. Chipman, F.J. Keil, A. Warshel, W.J. Hehre, H.F. Schaefer III, J.
Kong, A.I. Krylov, P.M.W. Gill, M. Head-Gordon, Advances in methods and
[1] A.T. Chaviara, P.C. Christidis, A. Papageorgiou, E. Chrysogelou, D.J. Hadjipavlou-
Litina, C.A. Bolos, In vivo anticancer, anti-inflammatory, and toxicity studies of
mixed-ligand Cu(II) complexes of dien and its Schiff dibases with heterocyclic
aldehydes and 2-amino-2-thiazoline. Crystal structure of [Cu(dien)(Br)(2a-2tzn)]
(Br)(H2O), J. Inorg. Biochem. 99 (2005) 2102–2109.
[2] T. Fujimori, S. Yamada, H. Yasui, H. Sakurai, Y.In.T. Ishida, Orally active antioxidative
copper(II) aspirinate: synthesis, structure characterization, superoxide scavenging
activity, and in vitro and in vivo antioxidative evaluations, J. Biol. Inorg. Chem. 10
(2005) 831–841.