Journal of the American Chemical Society
Communication
F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem.
Soc. 2013, 135, 1236.
AUTHOR INFORMATION
■
Corresponding Author
(8) (a) Kuninobu, Y.; Yoshida, T.; Takai, K. J. Org. Chem. 2011, 76,
7370. (b) Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F. Chem.
Commun. 2012, 48, 5181. (c) Wang, C.-B.; Bian, Y.-J.; Mao, X.-R.;
Huang, Z.-Z. J. Org. Chem. 2012, 77, 7706. (d) Wang, H.; Li, X.; Wu, F.;
Wan, B. Synthesis 2012, 44, 941. (e) Sun, M.; Wang, H.-L.; Ting, Q.-P.;
Yang, S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972. (f) Feng, C.-G.; Ye,
M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.
(9) For reviews on orthometalation of C−H bond, see: (a) Albrecht,
M. Chem. Rev. 2010, 110, 576. (b) Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. Rev. 2010, 110, 624. (c) Song, G.; Wang, F.; Li, X. Chem. Soc.
Rev. 2012, 41, 3651. For reviews on application of phosphine oxides in
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the National Basic
Research Program of China (973 Program 2010CB833300),
NSFC (20902099, 21172238), and SIOC.
metal-catalyzed reactions, see: (d) Dubrovina, N. V.; Borner, A. Angew.
̈
Chem., Int. Ed. 2004, 43, 5883. (e) Shaikh, T. M.; Weng, C.-M.; Hong,
F.-E. Coord. Chem. Rev. 2012, 256, 771.
REFERENCES
■
(1) (a) Phosphorus Heterocycles II; Bansal, R. K., Ed.; Topics in
Heterocyclic Chemistry; Springer, Berlin, 2010; Vol. 21. (b) Phosphorus
Ligands in Asymmetric Catalysis: Synthesis and Applications; Borner, A.,
Ed.; Wiley-VCH: Weinheim, 2008; Vols. 1−3. (c) Phosphorus
Compounds: Advanced Tools in Catalysis and Material Sciences;
Peruzzini, M., Gonsalvi, L., Ed.; Springer: Berlin, 2011.
(10) For recent examples of the synthesis of heterocycles through
silver-mediated oxidative cyclization processes, see: (a) He, C.; Guo, S.;
Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134,
5766. (b) He, C.; Hao, J.; Xu, H.; Mo, Y.; Liu, H.; Han, J.; Lei, A. Chem.
Commun. 2012, 48, 11073.
(11) The use of 1 equiv of arylphosphine oxides afforded the products
in relatively low yields (around 50%). It may be due to the presence of
oxidation side reactions of the arylphosphine oxides into the
arylphosphinic acids by silver oxidants.
̈
(2) Reviews on phospholes: (a) Matano, Y.; Imahori, H. Org. Biomol.
Chem. 2009, 7, 1258. (b) Mathey, F. Acc. Chem. Res. 2004, 37, 954.
(3) (a) Tsuji, H.; Sato, K.; IIies, L.; Itoh, Y.; Sato, Y.; Nakamura, E. Org.
Lett. 2008, 10, 2263. (b) Sanji, T.; Shiraishi, K.; Kashiwabara, T.;
Tanaka, M. Org. Lett. 2008, 10, 2689. (c) Fukazawa, A.; Ichihashi, Y.;
Kosaka, Y.; Yamaguchi, S. Chem.Asian J. 2009, 4, 1729. (d) Hayashi,
Y.; Matano, Y.; Suda, K.; Kimura, Y.; Nakao, Y.; Imahori, H. Chem.
Eur. J. 2012, 18, 15972.
(4) For selected reviews on the synthesis of heterocycles through the
C−H bond activation strategy, see: (a) Chen, X.; Engle, K. M.; Wang,
D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (b) Gutekunst, W.
R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (c) Stokes, B. J.; Briver, T.
G. Eur. J. Org. Chem. 2011, 4071. (d) Mei, T.-S.; Kou, L.; Ma, S.; Engle,
K. M.; Yu, J.-Q. Synthesis 2012, 44, 1778. (e) Yamaguchi, J.; Yamaguchi,
A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. (f) Wencel-
Delord, J.; Glorius, F. Nat. Chem. 2012, 5, 369. (g) Yoshikai, N.; Wei, Y.
Asian J. Org. Chem. 2013, 2, 466.
(12) For X-ray crystal data, see SI for details.
(13) For reviews on radical aryl migration reactions, see: (a) Studer, A.;
Bossart, M. Tetrahedron 2001, 57, 9649. (b) Bowman, W. R.; Storey, J.
M. D. Chem. Soc. Rev. 2007, 36, 1803. For examples of intramolecular
radical arylation of phosphinates with the C−P bond cleavage, see:
(c) Clive, D. L. J.; Kang, S. Tetrahedron Lett. 2000, 41, 1315. (d) Clive,
D. L. J.; Kang, S. J. Org. Chem. 2001, 66, 6083.
(14) An alternative explanation for the observed regioselectivity is that
the formed alkenyl radicals can be better stabilized by the adjacent aryl
groups than the alkyl groups.
(15) For the related experimental data in Table 1 by Method B, see SI
for details.
(16) For a review on the interpretation of deuterium kinetic isotope
effects in C−H bond functionalization, see: Simmons, E. M.; Hartwig, J.
F. Angew. Chem., Int. Ed. 2012, 51, 3066.
(17) Hunt, B. B.; Saunders, B. C. J. Chem. Soc. 1957, 2413.
(18) For examples of Ag-promoted generation of the trifluoromethyl
radical and nitro radical, see: (a) Ye, Y. D.; Lee, S. H.; Sanford, M. S. Org.
Lett. 2011, 13, 5464. (b) Maity, S.; Manna, S.; Rana, S.; Naveen, T.;
Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013, 135, 3355.
(19) For a review on the use of manganese(III) acetate in organic
synthesis, see: (a) Demir, A. S.; Emrullahoglu, M. Curr. Org. Synth. 2007,
4, 321. For selected examples, see: (b) Tayama, O.; Nakano, A.;
Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004, 69, 5494.
(c) Kagayama, T.; Nakano, A.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2006, 8,
407. (d) Mu, X.-J.; Zou, J.-P.; Qian, Q.-F.; Zhang, W. Org. Lett. 2006, 8,
5291. (e) Pan, X.-Q.; Zou, J.-P.; Zhang, G.-L.; Zhang, W. Chem.
Commun. 2010, 46, 1721. (f) Zhou, J.; Zhang, Z.-G.; Zou, J.-P.; Zhang,
W. Eur. J. Org. Chem. 2011, 3412. (g) Pan, X.-Q.; Wang, L.; Zou, J.-P.;
Zhang, W. Chem. Commun. 2011, 47, 7875. (h) Wang, G.-W.; Wang, C.-
Z.; Zou, J.-P. J. Org. Chem. 2011, 76, 6088.
(5) For selected examples, see: (a) Wurtz, S.; Rakshit, S.; Neumann, J.
̈
J.; Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230.
̈
(b) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J.
Am. Chem. Soc. 2008, 130, 16474. (c) Shi, Z.; Zhang, C.; Li, S.; Pan, D.;
Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572.
(d) Bernini, R.; Fabrizi, G.; Sferrazza, A.; Cacchi, S. Angew. Chem., Int.
Ed. 2009, 48, 8078. (e) Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11,
2417. (f) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem.
Soc. 2010, 132, 18326. (g) Chen, J.; Song, G.; Pan, C.-L.; Li, X. Org. Lett.
2010, 12, 5426. (h) Guan, Z.-H.; Yan, Z.-Y.; Ren, Z.-H.; Liu, X.-Y.;
Liang, Y.-M. Chem. Commun. 2010, 46, 2823. (i) Huestis, M. P.; Chan,
L.; Stuart, D. R.; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50, 1338.
(j) Wei, Y.; Deb, I.; Yoshikai, N. J. Am. Chem. Soc. 2012, 134, 9098.
(k) Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 9220.
(6) For selected examples, see: (a) Rakshit, S.; Patureau, F. W.; Glorius,
F. J. Am. Chem. Soc. 2010, 132, 9585. (b) Zhao, M.; Wang, F.; Li, X. Org.
Lett. 2012, 14, 1412. (c) Wang, L.; Ackermann, L. Org. Lett. 2013, 15,
176. (d) Shi, Z.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52,
4892.
(7) For selected examples, see: (a) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc.
2008, 130, 14058. (b) Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am.
Chem. Soc. 2010, 132, 5916. (c) Guimond, N.; Gouliaras, C.; Fagnou, K.
J. Am. Chem. Soc. 2010, 132, 6908. (d) Su, Y.; Zhao, M.; Han, K.; Song,
G.; Li, X. Org. Lett. 2010, 12, 5462. (e) Song, G.; Chen, D.; Pan, C.-L.;
Crabtree, R. H.; Li, X. J. Org. Chem. 2010, 75, 7487. (f) Lu, Y.; Leow, D.;
Wang, X.; Engle, K. M.; Yu, J.-Q. Chem. Sci. 2011, 2, 967. (g) Ackermann,
L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379.
(h) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011,
133, 6449. (i) Ma, W.; Graczyk, K.; Ackermann, L. Org. Lett. 2012, 14,
6318. (j) Deponti, M.; Kozhushkov, S. I.; Yufit, D. S.; Ackermann, L.
Org. Biomol. Chem. 2013, 11, 142. (k) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin,
(20) For applications of the obtained products and its derivatives as the
catalysts in the asymmetric double aldol reaction and gold-catalyzed
cyclization reaction, see the SI for details.
(21) 6a and 6b may be generated as a mixture of diastereomers. The
ratios cannot be determined due to the overlap in the NMR spectra.
16757
dx.doi.org/10.1021/ja407373g | J. Am. Chem. Soc. 2013, 135, 16754−16757