Organic Letters
Letter
(3) (a) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland:
Increasing Saturation as an Approach to Improving Clinical Success. J.
Med. Chem. 2009, 52, 6752−6756. (b) Dandapani, S.; Marcaurelle, L.
A. Accessing New Chemical Space for ‘Undruggable’ Targets. Nat.
2563−2575. (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C.
Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81,
6898−6926.
(15) (a) Zhang, R.; Li, G.; Wismer, M.; Vachal, P.; Colletti, S. L.; Shi,
Z.-C. Profiling and Application of Photoredox C(sp3)−C(sp2) Cross-
Coupling in Medicinal Chemistry. ACS Med. Chem. Lett. 2018, 9, 773−
777. (b) Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J. Visible Light
Photocatalysis: Applications and New Disconnections in the Synthesis
of Pharmaceutical Agents. Org. Process Res. Dev. 2016, 20, 1134−1147.
(16) (a) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N.
R.; Molander, G. A. Single-Electron Transmetalation via Photoredox/
Nickel Dual Catalysis: Unlocking a New Paradigm for sp3−sp2 Cross-
Coupling. Acc. Chem. Res. 2016, 49, 1429−1439. (b) Skubi, K. L.; Blum,
T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis.
Chem. Rev. 2016, 116, 10035−10074. (c) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.;
Yu, D.-G. Photoredox sheds new light on nickel catalysis: from carbon−
carbon to carbon−heteroatom bond formation. Org. Chem. Front.
2016, 3, 522−526.
́
Chem. Biol. 2010, 6, 861−863. (c) Lopez-Vallejo, F.; Giulianotti, M. A.;
Houghten, R. A.; Medina-Franco, J. L. Expanding the Medicinally
Relevant Chemical Space with Compound Libraries. Drug Discovery
Today 2012, 17, 718−726.
(4) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A.
W.; Wilson, D. M.; Wood, A. Organic synthesis provides opportunities
to transform drug discovery. Nat. Chem. 2018, 10, 383−394.
(5) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum,
G. A. Big Data from Pharmaceutical Patents: A Computational Analysis
of Medicinal Chemists’ Bread and Butter. J. Med. Chem. 2016, 59,
4385−4402.
(6) Vo, C.-V. T.; Bode, J. W. Synthesis of Saturated N-Heterocycles. J.
Org. Chem. 2014, 79, 2809−2815.
(7) (a) Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A
Versatile Strategy for Substrate Activation in Photocatalyzed Organic
Synthesis. Eur. J. Org. Chem. 2017, 2017, 2056−2071. (b) Ahneman, D.
T.; Doyle, A. G. C-H functionalization of amines with aryl halides by
nickel-photoredox catalysis. Chem. Sci. 2016, 7, 7002−7006. (c) Heitz,
D. R.; Tellis, J. C.; Molander, G. A. Photochemical Nickel-Catalyzed C-
H Arylation: Synthetic Scope and Mechanistic Investigations. J. Am.
Chem. Soc. 2016, 138, 12715−12718. (d) Vega, J. A.; Alonso, J. M.;
Mendez, G.; Ciordia, M.; Delgado, F.; Trabanco, A. A. Continuous
Flow α-Arylation of N,N-Dialkylhydrazones under Visible-Light
Photoredox Catalysis. Org. Lett. 2017, 19, 938−941.
(17) Yoon, T. P. Visible Light Photocatalysis: The Development of
Photocatalytic Radical Ion Cycloadditions. ACS Catal. 2013, 3, 895−
902.
(18) For examples, see: (a) Xiao, T.; Li, L.; Zhou, L. Synthesis of
Functionalized gem-Difluoroalkenes via a Photocatalytic Decarbox-
ylative/Defluorinative Reaction. J. Org. Chem. 2016, 81, 7908−7916.
(b) Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Photoredox
Generation of Carbon-Centered Radicals Enables the Construction of
1,1-Difluoroalkene Carbonyl Mimics. Angew. Chem., Int. Ed. 2017, 56,
15073−15077. (c) Grandjean, J.-M. M.; Nicewicz, D. A. Synthesis of
Highly Substituted Tetrahydrofurans by Catalytic Polar-Radical-
Crossover Cycloadditions of Alkenes and Alkenols. Angew. Chem., Int.
Ed. 2013, 52, 3967−3971. (d) Perkowski, A. J.; Nicewicz, D. A. Direct
Catalytic Anti-Markovnikov Addition of Carboxylic Acids to Alkenes. J.
Am. Chem. Soc. 2013, 135, 10334−10337.
(19) (a) Phelan, J. P.; Lang, S. B.; Compton, J. S.; Kelly, C. B.; Dykstra,
R.; Gutierrez, O.; Molander, G. A. Redox-Neutral Photocatalytic
Cyclopropanation via Radical/Polar Crossover. J. Am. Chem. Soc. 2018,
140, 8037−8047. (b) Milligan, J. A.; Phelan, J. P.; Polites, V. C.; Kelly,
C. B.; Molander, G. A. Radical/Polar Annulation Reactions (RPARs)
Enable the Modular Construction of Cyclopropanes. Org. Lett. 2018,
20, 6840−6844.
(20) Slater, K. A.; Friestad, G. K. Mn-Mediated Radical-Ionic
Annulations of Chiral N-Acylhydrazones. J. Org. Chem. 2015, 80,
6432−6440.
(21) (a) Jouffroy, M.; Primer, D. N.; Molander, G. A. Base-Free
Photoredox/Nickel Dual-Catalytic Cross-Coupling of Ammonium
Alkylsilicates. J. Am. Chem. Soc. 2016, 138, 475−478. (b) Lin, K.;
Kelly, C. B.; Jouffroy, M.; Molander, G. A. Preparation of
Diisopropylammonium Bis(catecholato) cyclohexylsilicate. Org.
Synth. 2017, 94, 16−33.
(22) Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. Mild,
Redox-Neutral Alkylation of Imines Enabled by an Organic Photo-
catalyst. ACS Catal. 2017, 7, 1766−1770.
(23) (a) Otteson, D.; Michl, J. A Procedure fo Gas-Phas
Dehalogenation of Organic Dihalides with Alkali Metal Vapors using
Microwave and/or Ultrsound Excitation and Matrix Isolation of
Products. J. Org. Chem. 1984, 49, 866−873. (b) Ohkita, T.; Tsuchiya,
Y.; Togo, H. Radical 3-exo-tet Cyclization of 1,3-Dihalopropanes with
SmI2 to form Cyclopropanes. Tetrahedron 2008, 64, 7247−7251.
(24) Kandukuri, S. R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I. D.;
(8) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.;
MacMillan, D. W. C. Merging photoredox with nickel catalysis:
Coupling α-carboxyl sp3 carbons with aryl halides. Science 2014, 345,
437−440.
́
(9) Iwanejko, J.; Wojaczynska, E. Cyclic imines − preparation and
application in synthesis. Org. Biomol. Chem. 2018, 16, 7296−7314.
(10) (a) Musacchio, A. J.; Nguyen, L. Q.; Beard, H.; Knowles, R. R.
Catalytic Olefin Hydroamination with Aminium Radical Cations: A
Photoredox Method for Direct C-N Bond Formation. J. Am. Chem. Soc.
2014, 136, 12217−12220. (b) Wappes, A.; Fosu, S. C.; Chopko, T. C.;
Nagib, D. A. Triiodide-Mediated δ-Amination of Secondary C−H
Bonds. Angew. Chem., Int. Ed. 2016, 55, 9974−9978. (c) Martinez, C.;
Muniz, K. An Iodine-Catalyzed Hofmann-Loffler Reaction. Angew.
Chem., Int. Ed. 2015, 54, 8287−8291.
(11) (a) Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R.
Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron
Transfer. J. Am. Chem. Soc. 2015, 137, 13492−13495. (b) Zheng, S.;
́
Gutierrez-Bonet, A.; Molander, G. A. Merging Photoredox PCET with
Ni-Catalyzed Cross-Coupling: Cascade Amidoarylation of Unactivated
Olefins. Chem. 2019, 5, 339−352.
(12) (a) Luescher, M. U.; Vo, C.-V. T.; Bode, J. W. SnAP Reagents for
the Synthesis of Piperazines and Morpholines. Org. Lett. 2014, 16,
1236−1239. (b) Luescher, M. U.; Bode, J. W. SnAP-eX Reagents for
the Synthesis of Exocyclic 3-Amino- and 3-Alkoxypyrrolidines and
Piperidines from Aldehydes. Org. Lett. 2016, 18, 2652−2655.
(13) (a) Hsieh, S.-Y.; Bode, J. W. Silicon Amine Reagents for the
Photocatalytic Synthesis of Piperazines from Aldehydes and Ketones.
Org. Lett. 2016, 18, 2098−2101. (b) Hsieh, S.-Y.; Bode, J. W. Lewis
Acid Induced Toggle from Ir(II) to Ir(IV) Pathways in Photocatalytic
Reactions: Synthesis of Thiomorpholines and Thiazepanes from
Aldehydes and SLAP Reagents. ACS Cent. Sci. 2017, 3, 66−72.
(c) Jackl, M. K.; Legnani, L.; Morandi, B.; Bode, J. W. Org. Lett. 2017,
19, 4696−4699.
́
Escudero-Adan, E. C.; Melchiorre, P. X-Ray Characterization of an
Electron Donor−Acceptor Complex that Drives the Photochemical
Alkylation of Indoles. Angew. Chem., Int. Ed. 2015, 54, 1485−1489.
(25) Yunlin, Y.; Xiangyu, M.; Xiaotong, L.; Jinxi, X.; Guoshu, C. A six-
ring spiro porphyrin compound and preparation method thereof.
Patent CN 108329324 A, July 27, 2018.
(14) For reviews on photoredox catalysis, see: (a) Prier, C. K.; Rankic,
D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with
Transition Metal Complexes: Applications in Organic Synthesis. Chem.
Rev. 2013, 113, 5322−5363. (b) Romero, N. A.; Nicewicz, D. A.
Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075−10166.
(c) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. Photoredox-
Mediated Routes to Radicals: The Value of Catalytic Radical
Generation in Synthetic Methods Development. ACS Catal. 2017, 7,
E
Org. Lett. XXXX, XXX, XXX−XXX